A scaled Polak-Ribiere-Polyak conjugate gradient algorithm for constrained nonlinear systems and motion control

被引:2
|
作者
Sabi'u, Jamilu [1 ]
Althobaiti, Ali [2 ]
Althobaiti, Saad [3 ]
Sahoo, Soubhagya Kumar [4 ]
Botmart, Thongchai [5 ]
机构
[1] Yusuf Maitama Sule Univ Kano, Dept Math, PMB 3220, Kano, Nigeria
[2] Taif Univ, Coll Sci, Math Dept, POB 11099, Taif 21944, Saudi Arabia
[3] Taif Univ, Ranyah Univ Coll, Dept Sci & Technol, POB 11099, Taif 21944, Saudi Arabia
[4] Siksha O Anusandhan Univ, Inst Tech Educ & Res, Dept Math, Bhubaneswar 751030, Odisha, India
[5] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 02期
关键词
convex constrained monotone systems; scaled conjugate gradient method; sufficient descent condition; Barzilai-Borwein approach; CONVERGENCE; PROJECTION;
D O I
10.3934/math.2023241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes Polak-Ribiere-Polyak (PRP) conjugate gradient (CG) directions based on two efficient scaling strategies. The first scaling parameter is determined by approaching the quasi-Newton direction, and the second by utilizing the well-known Barzilai-Borwein approach. In addition, we proposed two directions that satisfy the sufficient descent criterion regardless of the line search strategy. The proposed directions lead to a matrix-free algorithm for solving monotone-constrained nonlinear systems. The proposed algorithm's global convergence analysis is presented using some underlying assumptions. Furthermore, a detailed numerical comparison with other existing algorithms revealed that the proposed algorithm is both efficient and effective. Finally, the proposed technique is applied to the motion control problem of a two-joint planar robotic manipulator.
引用
收藏
页码:4843 / 4861
页数:19
相关论文
共 50 条
  • [21] Global convergence of modified Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property
    Yu, Gaohang
    Guan, Lutai
    Li, Guoyin
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2008, 4 (03) : 565 - 579
  • [22] RIEMANNIAN MODIFIED POLAK-RIBIERE-POLYAK CONJUGATE GRADIENT ORDER REDUCED MODEL BY TENSOR TECHNIQUES
    Jiang, Yao-Lin
    Xu, Kang-Li
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (02) : 432 - 463
  • [23] Fast control parameterization optimal control with improved Polak-Ribiere-Polyak conjugate gradient implementation for industrial dynamic processes
    Liu, Ping
    Hu, Qingquan
    Li, Lei
    Liu, Mingjie
    Chen, Xiaolei
    Piao, Changhao
    Liu, Xinggao
    ISA TRANSACTIONS, 2022, 123 : 188 - 199
  • [24] Globally convergent Polak-Ribiere-Polyak conjugate gradient methods under a modified Wolfe line search
    Yu, Gaohang
    Guan, Lutai
    Wei, Zengxin
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (08) : 3082 - 3090
  • [25] A Modified Sufficient Descent Polak-Ribiere-Polyak Type Conjugate Gradient Method for Unconstrained Optimization Problems
    Zheng, Xiuyun
    Shi, Jiarong
    ALGORITHMS, 2018, 11 (09):
  • [26] A New Family of Polak-Ribiere-Polyak Conjugate Gradient Method with the Strong-Wolfe Line Search
    Ghani, Nur Hamizah Abdul
    Mamat, Mustafa
    Rivaie, Mohd
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [27] A modified descent Polak-Ribiere-Polyak conjugate gradient method with global convergence property for nonconvex functions
    Aminifard, Zohre
    Babaie-Kafaki, Saman
    CALCOLO, 2019, 56 (02)
  • [28] Extension of Modified Polak-Ribiere-Polyak Conjugate Gradient Method to Linear Equality Constraints Minimization Problems
    Dai, Zhifeng
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [30] A Polak-Ribiere-Polyak Conjugate Gradient-Based Neuro-Fuzzy Network and Its Convergence
    Gao, Tao
    Wang, Jian
    Zhang, Bingjie
    Zhang, Huaqing
    Ren, Peng
    Pal, Nikhil R.
    IEEE ACCESS, 2018, 6 : 41551 - 41565