On a Solvable System of Difference Equations in Terms of Generalized Fibonacci Numbers

被引:0
|
作者
Yuksel, Arzu [1 ]
Yazlik, Yasin [2 ]
机构
[1] Nevsehir Haci Bektas Veli Univ, Inst Sci, Dept Math, Nevsehir, Turkiye
[2] Nevsehir Haci Bektas Veli Univ, Fac Sci & Art, Dept Math, Nevsehir, Turkiye
关键词
System of difference equations; closed-form; generalized Fibonacci numbers; BEHAVIOR; SOLVABILITY;
D O I
10.1515/ms-2023-0056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we represent that the following three-dimensional system of difference equations x(n+1) = alpha y(n) + ay(n)/y(n)- beta z(n-1), y(n)+1 = beta z(n) + bz(n)/ z(n) - gamma x(n-1), zn+1 = gamma x(n) + cx(n)/ x(n)- alpha y(n-1), n epsilon N-0, where the parameters a, b, c, alpha, beta, gamma and the initial values x(-i) y(-i) z(-i), i epsilon {0, 1}, are real numbers, can be solved in closed form by using transformation. We analyzed the solutions in 10 different cases depending on whether the parameters are zero or nonzero. It is noteworthy to depict that the solutions of some particular cases of this system are presented in terms of generalized Fibonacci numbers. Note that our results considerably extend and improve some recent results in the literature.
引用
收藏
页码:761 / 774
页数:14
相关论文
共 50 条
  • [21] SOLVABILITY OF A THIRD-ORDER SYSTEM OF NONLINEAR DIFFERENCE EQUATIONS VIA A GENERALIZED FIBONACCI SEQUENCE
    Hamioud, Hamida
    Dekkar, Imane
    Touafek, Nouressadat
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 271 - 285
  • [22] RATIOS OF GENERALIZED FIBONACCI NUMBERS
    Beardon, A. F.
    FIBONACCI QUARTERLY, 2022, 60 (03): : 235 - 237
  • [23] ON THE GENERALIZED GAUSSIAN FIBONACCI NUMBERS
    Lee, Gwang Yeon
    Asci, Mustafa
    ARS COMBINATORIA, 2017, 132 : 147 - 157
  • [24] ASPECTS OF GENERALIZED FIBONACCI NUMBERS
    HORADAM, AF
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (07): : 831 - &
  • [25] Curious Generalized Fibonacci Numbers
    Herrera, Jose L.
    Bravo, Jhon J.
    Gomez, Carlos A.
    MATHEMATICS, 2021, 9 (20)
  • [26] On a solvable difference equations system of second order its solutions are related to a generalized Mersenne sequence
    Hassani, Murad Khan
    Touafek, Nouressadat
    Yazlik, Yasin
    MATHEMATICA SLOVACA, 2024, 74 (03) : 703 - 716
  • [27] A NOTE ON GENERALIZED FIBONACCI NUMBERS
    LEE, GY
    LEE, SG
    FIBONACCI QUARTERLY, 1995, 33 (03): : 273 - 278
  • [28] SUMS OF GENERALIZED FIBONACCI NUMBERS
    Cerin, Zvonko
    Gianella, Gian Mario
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 12 (02): : 157 - 168
  • [29] A NOTE ON THE GENERALIZED FIBONACCI NUMBERS
    LEE, JZ
    LEE, JS
    FIBONACCI QUARTERLY, 1988, 26 (01): : 14 - 19
  • [30] On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequences
    Halim, Yacine
    Bayram, Mustafa
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (11) : 2974 - 2982