Contrastive self-supervised representation learning without negative samples for multimodal human action recognition

被引:1
|
作者
Yang, Huaigang [1 ]
Ren, Ziliang [1 ,2 ]
Yuan, Huaqiang [1 ]
Xu, Zhenyu [2 ]
Zhou, Jun [1 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, CAS Key Lab Human Machine Intelligence Synergy Sys, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
human action recognition; multimodal representation; feature encoder; contrastive self-supervised learning; Transformer;
D O I
10.3389/fnins.2023.1225312
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Action recognition is an important component of human-computer interaction, and multimodal feature representation and learning methods can be used to improve recognition performance due to the interrelation and complementarity between different modalities. However, due to the lack of large-scale labeled samples, the performance of existing ConvNets-based methods are severely constrained. In this paper, a novel and effective multi-modal feature representation and contrastive self-supervised learning framework is proposed to improve the action recognition performance of models and the generalization ability of application scenarios. The proposed recognition framework employs weight sharing between two branches and does not require negative samples, which could effectively learn useful feature representations by using multimodal unlabeled data, e.g., skeleton sequence and inertial measurement unit signal (IMU). The extensive experiments are conducted on two benchmarks: UTD-MHAD and MMAct, and the results show that our proposed recognition framework outperforms both unimodal and multimodal baselines in action retrieval, semi-supervised learning, and zero-shot learning scenarios.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Temporal Feature Alignment in Contrastive Self-Supervised Learning for Human Activity Recognition
    Khaertdinov, Bulat
    Asteriadis, Stylianos
    2022 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2022,
  • [22] Motion Sensitive Contrastive Learning for Self-supervised Video Representation
    Ni, Jingcheng
    Zhou, Nan
    Qin, Jie
    Wu, Qian
    Liu, Junqi
    Li, Boxun
    Huang, Di
    COMPUTER VISION - ECCV 2022, PT XXXV, 2022, 13695 : 457 - 474
  • [23] Contrastive Self-supervised Learning for Sensor-based Human Activity Recognition
    Khaertdinov, Bulat
    Ghaleb, Esam
    Asteriadis, Stylianos
    2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), 2021,
  • [24] Contrastive Self-Supervised Learning With Smoothed Representation for Remote Sensing
    Jung, Heechul
    Oh, Yoonju
    Jeong, Seongho
    Lee, Chaehyeon
    Jeon, Taegyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] Contrastive Self-supervised Representation Learning Using Synthetic Data
    She, Dong-Yu
    Xu, Kun
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2021, 18 (04) : 556 - 567
  • [26] Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-Supervised Action Recognition
    Guo, Tianyu
    Liu, Hong
    Chen, Zhan
    Liu, Mengyuan
    Wang, Tao
    Ding, Runwei
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 762 - 770
  • [27] Bayesian Contrastive Learning with Manifold Regularization for Self-Supervised Skeleton Based Action Recognition
    Lin, Lilang
    Zhang, Jiahang
    Liu, Jiaying
    Proceedings - IEEE International Symposium on Circuits and Systems, 2023, 2023-May
  • [28] Contrastive Self-supervised Representation Learning Using Synthetic Data
    Dong-Yu She
    Kun Xu
    International Journal of Automation and Computing, 2021, 18 : 556 - 567
  • [29] Contrastive Self-supervised Representation Learning Using Synthetic Data
    Dong-Yu She
    Kun Xu
    International Journal of Automation and Computing , 2021, (04) : 556 - 567
  • [30] Self-supervised Segment Contrastive Learning for Medical Document Representation
    Abro, Waheed Ahmed
    Kteich, Hanane
    Bouraoui, Zied
    ARTIFICIAL INTELLIGENCE IN MEDICINE, PT I, AIME 2024, 2024, 14844 : 312 - 321