Gauss curvature flow with shrinking obstacle

被引:0
|
作者
Lee, Ki-Ahm [1 ,2 ]
Lee, Taehun [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
关键词
FREE-BOUNDARY PROBLEMS; CONVEX HYPERSURFACES; GENERAL-CLASS; REGULARITY; SHAPES;
D O I
10.1007/s00208-023-02739-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a flow by powers of Gauss curvature under the obstruction that the flow cannot penetrate a prescribed region, so called an obstacle. For all dimensions and positive powers, we prove the optimal curvature bounds of solutions and all time existence with its long time behavior. We also prove the C-1 regularity of free boundaries under a uniform thickness assumption.
引用
收藏
页码:4055 / 4082
页数:28
相关论文
共 50 条
  • [21] Convexified gauss curvature flow of sets: A stochastic approximation
    Ishii, H
    Mikami, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (02) : 552 - 579
  • [22] Flow by Gauss curvature to the Lp dual Minkowski problem
    Guang, Qiang
    Li, Qi-Rui
    Wang, Xu-Jia
    MATHEMATICS IN ENGINEERING, 2023, 5 (03): : 1 - 19
  • [23] Flow by Gauss curvature to the orlicz chord Minkowski problem
    Zhao, Xia
    Zhao, Peibiao
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (05) : 2405 - 2424
  • [24] The free boundary in the Gauss Curvature Flow with flat sides
    Daskalopoulos, P
    Hamilton, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 510 : 187 - 227
  • [25] Gauss maps of the Ricci-mean curvature flow
    Koike, Naoyuki
    Yamamoto, Hikaru
    GEOMETRIAE DEDICATA, 2018, 194 (01) : 169 - 185
  • [26] Gauss maps of the Ricci-mean curvature flow
    Naoyuki Koike
    Hikaru Yamamoto
    Geometriae Dedicata, 2018, 194 : 169 - 185
  • [27] TRANSLATING SOLUTIONS TO THE GAUSS CURVATURE FLOW WITH FLAT SIDES
    Choi, Kyeongsu
    Daskalopoulos, Panagiota
    Lee, Ki-Ahm
    ANALYSIS & PDE, 2021, 14 (02): : 595 - 616
  • [28] GAUSS MAPS OF TRANSLATING SOLITONS OF MEAN CURVATURE FLOW
    Bao, Chao
    Shi, Yuguang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (12) : 4333 - 4339
  • [29] Horizontal Gauss Curvature Flow of Graphs in Carnot Groups
    Martin, Erin Haller
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (04) : 1267 - 1302
  • [30] Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems
    Li, Qi-Rui
    Sheng, Weimin
    Wang, Xu-Jia
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (03) : 893 - 923