Extensions of Solovay's system S without independent sets of axioms

被引:0
|
作者
Gorbunov, Igor [1 ]
Shkatov, Dmitry [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127051, Russia
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
基金
俄罗斯科学基金会;
关键词
Quasi -normal modal logic; Independent axiomatizability; Lattices of logics;
D O I
10.1016/j.apal.2023.103360
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chagrov and Zakharyaschev posed the problem of existence of extensions of Solovay's system S, which is a non-normalizable quasi-normal modal logic, that do not admit deductively independent sets of axioms. This paper gives a solution by exhibiting countably many extensions of S without deductively independent sets of axioms.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Solovay's Relative Consistency Proof for FIM and BI
    Moschovakis, Joan Rand
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2021, 62 (04) : 661 - 667
  • [22] Bell’s inequalities and kolmogorov’s axioms
    David Atkinson
    Pramana, 2001, 56 : 139 - 152
  • [23] Bell's inequalities and Kolmogorov's axioms
    Atkinson, D
    PRAMANA-JOURNAL OF PHYSICS, 2001, 56 (2-3): : 139 - 152
  • [24] INDEPENDENT SETS OF CARDINALITY s OF MAXIMAL OUTERPLANAR GRAPHS
    Estes, John
    Staton, William
    Wei, Bing
    FIBONACCI QUARTERLY, 2013, 51 (02): : 147 - 150
  • [25] Bankruptcy's uncontested axioms
    Baird, DG
    YALE LAW JOURNAL, 1998, 108 (03): : 573 - 599
  • [26] On Birkhoff's quasigroup axioms
    Phillips, J. D.
    Pushkashu, D. I.
    Shcherbacov, A. V.
    Shcherbacov, V. A.
    JOURNAL OF ALGEBRA, 2016, 457 : 7 - 17
  • [27] CARNAPIAN EXTENSIONS OF S5-SYSTEM
    HENDRY, HE
    POKRIEFKA, ML
    JOURNAL OF PHILOSOPHICAL LOGIC, 1985, 14 (02) : 111 - 128
  • [28] AN INFINITY OF MUTUALLY INDEPENDENT INFINITE AXIOMS IN ZERMELOS SYSTEM
    BOFFA, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (04): : 205 - &
  • [29] Axioms for Mach's mechanics
    Sant'Anna, AS
    Maia, CAS
    FOUNDATIONS OF PHYSICS LETTERS, 2001, 14 (03) : 247 - 262
  • [30] Axioms for S-pregroups
    Wolf, AR
    Janik, J
    ALGEBRA UNIVERSALIS, 1996, 36 (03) : 413 - 420