JAXA's new high-resolution land use land cover map for Vietnam using a time-feature convolutional neural network

被引:4
|
作者
Truong, Van Thinh [1 ]
Hirayama, Sota [2 ]
Phan, Duong Cao [3 ,4 ]
Hoang, Thanh Tung [5 ]
Tadono, Takeo [2 ]
Nasahara, Kenlo Nishida [6 ]
机构
[1] Univ Tsukuba, Degree Programs Life & Earth Sci, Grad Sch Sci & Technol, Tennodai 1-1-1, Tsukuba, Ibaraki 3058572, Japan
[2] Japan Aerosp Explorat Agcy JAXA, Earth Observat Res Ctr EORC, Sengen 2-1-1, Tsukuba, Ibaraki 3058505, Japan
[3] Univ Coll Dublin, Irelands Ctr Appl AI, Sch Comp Sci, Dublin 4, Belfield, Ireland
[4] Vietnam Acad Water Resources, Hydraul Construct Inst, 3,Alley 95,Chua Boc St, Hanoi 116765, Vietnam
[5] Hanoi Univ, Fac Int Studies, Km9 Nguyen Trai Rd, Hanoi 100803, Vietnam
[6] Univ Tsukuba, Fac Life & Environm Sci, Tennoudai 1-1-1, Tsukuba, Ibaraki 3058572, Japan
关键词
REFORESTATION; ACCURACY; SERIES;
D O I
10.1038/s41598-024-54308-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Land use land cover (LULC) maps are crucial for various applications, such as disaster management, natural resource conservation, biodiversity evaluation, climate modeling, etc. The Japan Aerospace Exploration Agency (JAXA) has released several high-resolution LULC maps for national and regional scales. Vietnam, due to its rich biodiversity and cultural diversity, is a target country for the production of high-resolution LULC maps. This study introduces a high-resolution and high-accuracy LULC map for Vietnam, utilizing a CNN approach that performs convolution over a time-feature domain instead of the typical geospatial domain employed by conventional CNNs. By using multi-temporal data spanning 6 seasons, the produced LULC map achieved a high overall accuracy of 90.5% +/- 1.2%, surpassing other 10-meter LULC maps for Vietnam in terms of accuracy and/or the ability to capture detailed features. In addition, a straightforward and practical approach was proposed for generating cloud-free multi-temporal Sentinel-2 images, particularly suitable for cloudy regions. This study marks the first implementation of the time-feature CNN approach for the creation of a high-accuracy LULC map in a tropical cloudy country.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] JAXA’s new high-resolution land use land cover map for Vietnam using a time-feature convolutional neural network
    Van Thinh Truong
    Sota Hirayama
    Duong Cao Phan
    Thanh Tung Hoang
    Takeo Tadono
    Kenlo Nishida Nasahara
    Scientific Reports, 14
  • [2] JAXA High-Resolution Land Use/Land Cover Map for Central Vietnam in 2007 and 2017
    Phan Cao Duong
    Ta Hoang Trung
    Nasahara, Kenlo Nishida
    Tadono, Takeo
    REMOTE SENSING, 2018, 10 (09)
  • [3] New JAXA High-Resolution Land Use/Land Cover Map for Vietnam Aiming for Natural Forest and Plantation Forest Monitoring
    Thanh Tung Hoang
    Van Thinh Truong
    Hayashi, Masato
    Tadono, Takeo
    Nasahara, Kenlo Nishida
    REMOTE SENSING, 2020, 12 (17)
  • [4] MAPPING SPATIAL ACCURACY OF FOREST TYPE CLASSIFICATION IN JAXA's HIGH-RESOLUTION LAND USE AND LAND COVER MAP
    Tsutsumida, N.
    Nagai, S.
    Rodriguez-Veiga, P.
    Katagi, J.
    Nasahara, K.
    Tadono, T.
    ISPRS TECHNICAL COMMISSION III WG III/2, 10 JOINT WORKSHOP MULTIDISCIPLINARY REMOTE SENSING FOR ENVIRONMENTAL MONITORING, 2019, 4-3 (W1): : 57 - 63
  • [5] JAXA HIGH RESOLUTION LAND-USE AND LAND-COVER MAP OF JAPAN
    Takahashi, Masuo
    Nasahara, Kenlo Nishida
    Tadono, Takeo
    Watanabe, Tomohiro
    Dotsu, Masanori
    Sugimura, Toshiro
    Tomiyama, Nobuhiro
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2384 - 2387
  • [6] Temporal convolutional neural network for land use and land cover classification using satellite images time series
    Thiago Berticelli Ló
    Ulisses Brisolara Corrêa
    Ricardo Matsumura Araújo
    Jerry Adriani Johann
    Arabian Journal of Geosciences, 2023, 16 (10)
  • [7] Land use and land cover classification for change detection studies using convolutional neural network
    Pushpalatha, V.
    Mallikarjuna, P.B.
    Mahendra, H.N.
    Rama Subramoniam, S.
    Mallikarjunaswamy, S.
    Applied Computing and Geosciences, 25
  • [8] Land use and land cover classification for change detection studies using convolutional neural network
    Pushpalatha, V.
    Mallikarjuna, P. B.
    Mahendra, H. N.
    Subramoniam, S. Rama
    Mallikarjunaswamy, S.
    APPLIED COMPUTING AND GEOSCIENCES, 2025, 25
  • [9] Development of a convolutional neural network to accurately detect land use and land cover
    Acuna-Alonso, Carolina
    Garcia-Ontiyuelo, Mario
    Barba-Barragans, Diego
    Alvarez, Xana
    METHODSX, 2024, 12
  • [10] Generation of the High-Resolution Land-Use and Land-Cover Map in Japan Version 21.11
    Hirayama, Sota
    Tadono, Takeo
    Mizukami, Yousei
    Ohki, Masato
    Imamura, Koichi
    Hirade, Naoyoshi
    Ohgushi, Fumi
    Dotsu, Masanori
    Yamanokuchi, Tsutomu
    Nasahara, Kenlo Nishida
    International Geoscience and Remote Sensing Symposium (IGARSS), 2022, 2022-July : 4339 - 4342