Land use and land cover classification for change detection studies using convolutional neural network

被引:0
|
作者
Pushpalatha, V. [1 ]
Mallikarjuna, P. B. [2 ]
Mahendra, H. N. [3 ]
Subramoniam, S. Rama [4 ]
Mallikarjunaswamy, S. [3 ]
机构
[1] Visvesvaraya Technol Univ, JSS Acad Tech Educ, Dept Informat Sci & Engn, Bengaluru 560060, Karnataka, India
[2] Visvesvaraya Technol Univ, JSS Acad Tech Educ, Dept Comp Sci & Engn, Bengaluru 560060, Karnataka, India
[3] Visvesvaraya Technol Univ, JSS Acad Tech Educ, Dept Elect & Commun Engn, Bengaluru 560060, Karnataka, India
[4] Indian Space Res Org ISRO, NRSC, Reg Remote Sensing Ctr South, Bengaluru 560037, Karnataka, India
来源
关键词
Remote sensing: geographic information systems; Convolutional neural networks; Deep learning; Change detection; Resourcesat-1; Linear imaging self-scanning sensor-III; Land use land cover;
D O I
10.1016/j.acags.2025.100227
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Efficient land use land cover (LULC) classification is crucial for environmental monitoring, urban planning, and resource management. This study investigates LULC changes in Nanjangud taluk, Mysuru district, Karnataka, India, using remote sensing (RS) and geographic information systems (GIS). This paper mainly focuses on the classification and change detection analysis of LULC in 2010 and 2020 using linear imaging self-scanning sensor-III (LISS-III) remote sensing images. Traditional methods for LULC classification involve manual interpretation of satellite images, which provides lower accuracy. Therefore, this paper proposed the Convolutional Neural Network (CNN)-based deep learning method for LULC classification. The main objective of the research work is to perform an efficient LULC classification for the change detection study of the Nanjagud taluk using the classified maps of the years 2010 and 2020. The experimental results indicate that the proposed classification method is outperformed, with an overall accuracy of 94.08% for the 2010 data and 95.30% for the 2020 data. Further, change detection analysis has been carried out using classified maps and the results show that built-up areas increased by 8.34 sq. km (0.83%), agricultural land expanded by 2.21 sq. km (0.23%), and water bodies grew by 3.31 sq. km (0.35%). Conversely, forest cover declined by 1.49 sq. km (0.15%), and other land uses reduced by 11.93 sq. km (1.22%) over the decade.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Land use and land cover classification for change detection studies using convolutional neural network
    Pushpalatha, V.
    Mallikarjuna, P.B.
    Mahendra, H.N.
    Rama Subramoniam, S.
    Mallikarjunaswamy, S.
    Applied Computing and Geosciences, 25
  • [2] Urban Land Cover Classification and Change Detection Using Fully Atrous Convolutional Neural Network
    Ji S.
    Tian S.
    Zhang C.
    Ji, Shunping (jishunping@whu.edu.cn), 1600, Editorial Board of Medical Journal of Wuhan University (45): : 233 - 241
  • [3] A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks
    Carranza-Garcia, Manuel
    Garcia-Gutierrez, Jorge
    Riquelme, Jose C.
    REMOTE SENSING, 2019, 11 (03)
  • [4] Deep learning for the prediction and classification of land use and land cover changes using deep convolutional neural network
    Jagannathan, J.
    Divya, C.
    ECOLOGICAL INFORMATICS, 2021, 65
  • [5] Temporal convolutional neural network for land use and land cover classification using satellite images time series
    Thiago Berticelli Ló
    Ulisses Brisolara Corrêa
    Ricardo Matsumura Araújo
    Jerry Adriani Johann
    Arabian Journal of Geosciences, 2023, 16 (10)
  • [6] A RECURRENT CONVOLUTIONAL NEURAL NETWORK FOR LAND COVER CHANGE DETECTION IN MULTISPECTRAL IMAGES
    Mou, Lichao
    Zhu, Xiao Xiang
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4363 - 4366
  • [7] Land-Use Change Detection with Convolutional Neural Network Methods
    Cao, Cong
    Dragicevic, Suzana
    Li, Songnian
    ENVIRONMENTS, 2019, 6 (02)
  • [8] Development of a convolutional neural network to accurately detect land use and land cover
    Acuna-Alonso, Carolina
    Garcia-Ontiyuelo, Mario
    Barba-Barragans, Diego
    Alvarez, Xana
    METHODSX, 2024, 12
  • [9] Temporal generalization of an artificial neural network for land use/land cover classification
    Tolentino, Franciele M.
    Galo, Maria de Lourdes B. T.
    Christovam, Luiz E.
    Coladello, Leandro F.
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS IX, 2018, 10790
  • [10] Land cover classification for polarimetric SAR image using convolutional neural network and superpixel
    Ma Y.
    Li Y.
    Zhu L.
    Progress In Electromagnetics Research B, 2019, 83 (2019): : 111 - 128