Low-cost porous carbon materials prepared from peanut red peels for novel zinc-ion hybrid capacitors

被引:11
|
作者
Sun, Zhichao [1 ]
Jiao, Xinyu [1 ]
Chu, Siyu [1 ]
Li, Zijiong [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Elect & Informat, Key Lab Magnetoelectron Informat Funct Mat Henan P, Zhengzhou 450002, Peoples R China
来源
CHEMISTRYSELECT | 2023年 / 8卷 / 47期
关键词
Biomass; Energy storage; Porous carbon; Peanut red skin; Zinc-ion hybrid supercapacitors; ENERGY-STORAGE; BATTERIES; SUPERCAPACITORS; ELECTROLYTE; CHALLENGES; FUTURE; LIFE;
D O I
10.1002/slct.202304071
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-ion hybrid capacitors combine the advantages of supercapacitors and batteries and are a promising electrochemical energy storage device. In order to meet the demand for materials with higher energy density and longer cycle time, there is an urgent need to find a zinc-ion supercapacitor cathode material with lower cost and better electrochemical performance. In this experiment, low-cost agricultural peanut red skin waste was converted into biomass-derived carbon material (PSR-X) with high specific surface area, larger pore volume, and more homogeneous pore size distribution through carbonisation and KOH activation. Due to the interaction of these properties, PSR-X as the cathode material has higher specific capacity and better multiplicity performance than the zinc-ion capacitor prepared from the initial carbonised PSR as the cathode material. In addition, the PSR-4-based zinc-ion capacitor has an excellent specific capacity of 86 mAh g-1 at a current density of 0.1 A g-1, a high capacity retention of 55 % even at a high current density of 30 A g-1, and a high energy density of 66.16 Wh kg-1 at a power density of 218.1 W kg-1. What is more gratifying is that the capacitor exhibits an ultra-long cycle life, with a high capacity retention rate of 85 % after 8,000 charge/discharge cycles at a current density of 1 A g-1. Cathode materials for zinc-ion hybrid supercapacitors with high specific surface area and uniform pore size distribution were prepared by a simple carbonisation and KOH activation method using low-cost peanut red skin agricultural waste. In addition, the zinc-ion hybrid capacitor assembled with the derived carbon material as the cathode material has high specific capacity and energy density, excellent multiplicity performance and cycling stability. It not only improves the electrochemical performance of the capacitor during the energy storage process, but also presents more possibilities for the green and safe output of zinc-ion capacitors.image
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond
    Sui, Dong
    Wu, Manman
    Shi, Kaiyuan
    Li, Changle
    Lang, Junwei
    Yang, Yanliang
    Zhang, Xiaoyan
    Yan, Xingbin
    Chen, Yongsheng
    CARBON, 2021, 185 (185) : 126 - 151
  • [22] A flexible Zinc-ion hybrid supercapacitor constructed by porous carbon with controllable structure
    Wang, Jiaming
    Huang, Ying
    Han, Xiaopeng
    Li, Zengyong
    Zhang, Shuai
    Zong, Meng
    Applied Surface Science, 2022, 579
  • [23] N, O and P co-doped hierarchically porous carbon fiber for high performance Zinc-ion hybrid capacitors
    Zhao, Guangzhen
    Zheng, Qiang
    Zou, Chuchu
    Zhang, Yu
    Wei, Mingqi
    Zhu, Guang
    Zhao, Ruizheng
    MATERIALS LETTERS, 2024, 377
  • [24] In-situ activation of resorcinol-furfural resin derived hierarchical porous carbon for supercapacitors and zinc-ion hybrid capacitors
    Tian, Zhiwei
    Yang, Chen
    Zhang, Chunmei
    Han, Xiaoshuai
    Han, Jingquan
    Liu, Kunming
    He, Shuijian
    Duan, Gaigai
    Jian, Shaoju
    Hu, Jiapeng
    Yang, Weisen
    Jiang, Shaohua
    JOURNAL OF ENERGY STORAGE, 2024, 85
  • [25] Design Principles for Gradient Porous Carbon on Aqueous Zinc-Ion Hybrid Capacitors: A Combined Molecular Dynamic and Machine Learning Study
    Zhang, Yifeng
    Tian, Jie
    Li, Guanyu
    Ji, Dongyang
    Sun, Chen
    Fan, Zeng
    Pan, Lujun
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (02) : 3448 - 3456
  • [26] O doped Tremella-shaped porous carbon for zinc-ion hybrid capacitors with long life and enhanced energy density
    Zhao, Guangzhen
    Han, Lu
    Ning, Ke
    Zhu, Guang
    Yang, Jie
    Wang, Hongyan
    MATERIALS LETTERS, 2022, 329
  • [27] A flexible Zinc-ion hybrid supercapacitor constructed by porous carbon with controllable structure
    Wang, Jiaming
    Huang, Ying
    Han, Xiaopeng
    Li, Zengyong
    Zhang, Shuai
    Zong, Meng
    APPLIED SURFACE SCIENCE, 2022, 579
  • [28] Porous and graphitic carbon nanosheets with controllable structure for zinc-ion hybrid capacitor
    Zhang, Xiaohua
    Jiang, Chao
    Zhao, Jixin
    Liu, Baosheng
    Wang, Tengda
    Li, Hengxiang
    Shi, Wenjing
    Zhao, Xinxin
    Yan, Xiaoyan
    Liu, Yanzhen
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 664 : 146 - 155
  • [29] Flexible CNT@Porous carbon sponge cathode with large mesopores for high-rate zinc-ion hybrid capacitors
    Yang, Boyu
    Zhao, Wenqi
    Gao, Zhan
    Yang, Jingwen
    Shi, Weihao
    Zhang, Yifan
    Su, Qingmei
    Xu, Bingshe
    Du, Gaohui
    Carbon, 2024, 218
  • [30] Flexible CNT@Porous carbon sponge cathode with large mesopores for high-rate zinc-ion hybrid capacitors
    Yang, Boyu
    Zhao, Wenqi
    Gao, Zhan
    Yang, Jingwen
    Shi, Weihao
    Zhang, Yifan
    Su, Qingmei
    Xu, Bingshe
    Du, Gaohui
    CARBON, 2024, 218