A class of location invariant estimators for heavy tailed distributions

被引:0
|
作者
Zhang, Lvyun [1 ]
Chen, Shouquan [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
关键词
Asymptotic normality; location invariant heavy tailed index estimator; second order regular variation; MOMENT ESTIMATOR; INDEX; HILL; INFERENCE; SUMS;
D O I
10.1080/03610926.2021.1931335
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a new class of location-invariant semi-parametric estimators of a positive extreme value index gamma>0 is proposed. Its asymptotic distributional representation and asymptotic normality are derived, and the optimal choice of the sample fraction by mean squared error is also discussed for some special cases. Finally comparison studies are provided for some familiar models by Monte Carlo simulations.
引用
收藏
页码:896 / 917
页数:22
相关论文
共 50 条
  • [1] A class of unbiased location invariant Hill-type estimators for heavy tailed distributions
    Li, Jiaona
    Peng, Zuoxiang
    Nadarajah, Saralees
    ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 829 - 847
  • [2] Affine Invariant Covariance Estimation for Heavy-Tailed Distributions
    Ostrovskii, Dmitrii M.
    Rudi, Alessandro
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [3] Beta kernel quantile estimators of heavy-tailed loss distributions
    Charpentier, Arthur
    Oulidi, Abder
    STATISTICS AND COMPUTING, 2010, 20 (01) : 35 - 55
  • [4] Beta kernel quantile estimators of heavy-tailed loss distributions
    Arthur Charpentier
    Abder Oulidi
    Statistics and Computing, 2010, 20 : 35 - 55
  • [5] A wide class of heavy-tailed distributions and its applications
    Su C.
    Hu Z.
    Chen Y.
    Liang H.
    Frontiers of Mathematics in China, 2007, 2 (2) : 257 - 286
  • [6] A New Heavy Tailed Class of Distributions Which Includes the Pareto
    Bhati, Deepesh
    Calderin-Ojeda, Enrique
    Meenakshi, Mareeswaran
    RISKS, 2019, 7 (04)
  • [7] Calculation of ruin probabilities for a dense class of heavy tailed distributions
    Bladt, Mogens
    Nielsen, Bo Friis
    Samorodnitsky, Gennady
    SCANDINAVIAN ACTUARIAL JOURNAL, 2015, (07) : 573 - 591
  • [8] Kernel-type estimators for the distortion risk premiums of heavy-tailed distributions
    Benkhelifa, Lazhar
    SCANDINAVIAN ACTUARIAL JOURNAL, 2016, (03) : 262 - 278
  • [9] A new class of models for heavy tailed distributions in finance and insurance risk
    Ahn, Soohan
    Kim, Joseph H. T.
    Ramaswami, Vaidyanathan
    INSURANCE MATHEMATICS & ECONOMICS, 2012, 51 (01): : 43 - 52
  • [10] Inference for heavy tailed distributions
    Athreya, K. B.
    Lahiri, S. N.
    Wu, W.
    Journal of Statistical Planning and Inference, 66 (01):