Beta kernel quantile estimators of heavy-tailed loss distributions

被引:0
|
作者
Arthur Charpentier
Abder Oulidi
机构
[1] CREM-Université Rennes 7,
[2] IMA,undefined
来源
Statistics and Computing | 2010年 / 20卷
关键词
Beta kernels; distribution; Loss distributions; Quantile estimation; Transformed kernel; Value-at-risk;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we suggest several nonparametric quantile estimators based on Beta kernel. They are applied to transformed data by the generalized Champernowne distribution initially fitted to the data. A Monte Carlo based study has shown that those estimators improve the efficiency of the traditional ones, not only for light tailed distributions, but also for heavy tailed, when the probability level is close to 1. We also compare these estimators with the Extreme Value Theory Quantile applied to Danish data on large fire insurance losses.
引用
收藏
页码:35 / 55
页数:20
相关论文
共 50 条
  • [1] Beta kernel quantile estimators of heavy-tailed loss distributions
    Charpentier, Arthur
    Oulidi, Abder
    [J]. STATISTICS AND COMPUTING, 2010, 20 (01) : 35 - 55
  • [2] Kernel-type estimators for the distortion risk premiums of heavy-tailed distributions
    Benkhelifa, Lazhar
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2016, (03) : 262 - 278
  • [3] Estimating catastrophic quantile levels for heavy-tailed distributions
    Matthys, G
    Delafosse, E
    Guillou, A
    Beirlant, J
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2004, 34 (03): : 517 - 537
  • [4] A new extreme quantile estimator for heavy-tailed distributions
    Fils, A
    Guillou, A
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 338 (06) : 493 - 498
  • [5] Kernel-type estimator of the reinsurance premium for heavy-tailed loss distributions
    Benkhelifa, Lazhar
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2014, 59 : 65 - 70
  • [6] On extreme quantile region estimation under heavy-tailed elliptical distributions
    Pere, Jaakko
    Ilmonen, Pauliina
    Viitasaari, Lauri
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 202
  • [7] Estimation and Inference of Extremal Quantile Treatment Effects for Heavy-Tailed Distributions
    Deuber, David
    Li, Jinzhou
    Engelke, Sebastian
    Maathuis, Marloes H.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023,
  • [8] Heavy-tailed distributions and their applications
    Su, C
    Tang, QH
    [J]. PROBABILITY, FINANCE AND INSURANCE, 2004, : 218 - 236
  • [9] Kernel density estimation for heavy-tailed distributions using the Champernowne transformation
    Buch-Larsen, T
    Nielsen, JP
    Guillén, M
    Bolancé, C
    [J]. STATISTICS, 2005, 39 (06) : 503 - 518
  • [10] Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions
    Galarza, Christian E.
    Zhang, Panpan
    Lachos, Victor H.
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2021, 83 (SUPPL 2): : 325 - 349