CNN-Based Stochastic Regression for IDDQ Outlier Identification

被引:1
|
作者
Yen, Chia-Heng [1 ,2 ,4 ]
Chen, Chun-Teng [1 ,2 ]
Wen, Cheng-Yen [3 ]
Chen, Ying-Yen [5 ]
Lee, Jih-Nung [5 ]
Kao, Shu-Yi [5 ]
Wu, Kai-Chiang [1 ,2 ]
Chao, Mango Chia-Tso [3 ,4 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Comp Sci, Hsinchu 30010, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Comp Sci & Engn, Hsinchu 30010, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Dept Elect Engn, Hsinchu 30010, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Inst Elect, Hsinchu 30010, Taiwan
[5] Realtek Semicond Corp, CTC DFT, Hsinchu 30076, Taiwan
关键词
Testing; Stochastic processes; Correlation; Predictive models; Standards; Data models; Convolutional neural networks; Convolutional neural network (CNN); IC testing; IDDQ outlier identification; stochastic regression; CMOS;
D O I
10.1109/TCAD.2023.3253043
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
To reduce defect parts per million (DPPM) on IC products, IDDQ testing can be exploited for identifying the outliers which are potentially defective but not detected by sign-off functional and parametric tests. Conventional IDDQ testing paradigms depending on a simple statistical 6 sigma rule or engineers' experience are usually too conservative to effectively identify nontrivial outliers, especially, when spatial correlations are of great concern/influence. In article, an improved convolutional neural network (CNN)-based method can be proposed for IDDQ outlier identification. In the proposed method, the mean and the standard deviation on the IDDQ value inside a die under test (DUT) can be predicted by employing a stochastic regression model. According to the predicted mean and standard deviation, we derive an expected IDDQ interval and identify the DUT as an outlier if its actual measured IDDQ value is beyond the expected interval. From the observation of the experimental results, the improved data preprocessing and the improved CNN-based stochastic regression can be contained to enhance the prediction accuracy of the expected IDDQ intervals. In the improved method, the spatial correlations of the neighboring dice inside a window can be considered by training a CNN-based stochastic regression model with a large volume of industrial data on 28 and 65 nm products. The trained model is highly accurate prediction in the R-2 (0.973) and RMSE (0.626 mA) of the expected IDDQ values on 28 nm product and the R-2 (0.942) and RMSE (2.155 uA) of the expected IDDQ values on 65 nm product. Furthermore, the experimental results show that the trained model can capture the potential defective dice by identifying efficient IDDQ outliers.
引用
收藏
页码:4282 / 4295
页数:14
相关论文
共 50 条
  • [1] CNN-based Stochastic Regression for IDDQ Outlier Identification
    Chen, Chun-Teng
    Yen, Chia-Heng
    Wen, Cheng-Yen
    Yang, Cheng-Hao
    Wu, Kai-Chiang
    Chern, Mason
    Chen, Ying-Yen
    Kuo, Chun-Yi
    Lee, Jih-Nung
    Kao, Shu-Yi
    Chao, Mango Chia-Tso
    2020 IEEE 38TH VLSI TEST SYMPOSIUM (VTS 2020), 2020,
  • [2] CNN-based algorithm for drusen identification
    Checco, Paolo
    Corinto, Fernando
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 2181 - +
  • [3] CNN-based fish iris identification
    Schraml, Rudolf
    Wimmer, Georg
    Hofbauer, Heinz
    Jalilian, Ehsaneddin
    Bekkozhayeva, Dinara
    Cisar, Petr
    Uhl, Andreas
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 628 - 632
  • [4] A CNN-based vortex identification method
    Liang Deng
    Yueqing Wang
    Yang Liu
    Fang Wang
    Sikun Li
    Jie Liu
    Journal of Visualization, 2019, 22 : 65 - 78
  • [5] A CNN-based vortex identification method
    Deng, Liang
    Wang, Yueqing
    Liu, Yang
    Wang, Fang
    Li, Sikun
    Liu, Jie
    JOURNAL OF VISUALIZATION, 2019, 22 (01) : 65 - 78
  • [6] COMPARISON OF UNCERTAINTY QUANTIFICATION METHODS FOR CNN-BASED REGRESSION
    Wursthorn, K.
    Hillemann, M.
    Ulrich, M.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 721 - 728
  • [7] CNN-Based Fast Source Device Identification
    Mandelli, Sara
    Cozzolino, Davide
    Bestagini, Paolo
    Verdoliva, Luisa
    Tubaro, Stefano
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1285 - 1289
  • [8] A CNN-Based Automated Stuttering Identification System
    Prabhu, Yash
    Seliya, Naeem
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1601 - 1605
  • [9] Use of multiple IDDQ test metrics for Outlier identification
    Sabade, SS
    Walker, DMH
    21ST IEEE VLSI TEST SYMPOSIUM, PROCEEDINGS, 2003, : 31 - 38
  • [10] A fast Cascade Shape Regression Method based on CNN-based Initialization
    Gao, Pengcheng
    Xue, Jian
    Lu, Ke
    Yan, Yanfu
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3037 - 3042