Robustness of Optimized Decision Tree-Based Machine Learning Models to Map Gully Erosion Vulnerability

被引:9
|
作者
Eloudi, Hasna [1 ]
Hssaisoune, Mohammed [1 ,2 ,3 ]
Reddad, Hanane [4 ]
Namous, Mustapha [5 ]
Ismaili, Maryem [5 ]
Krimissa, Samira [5 ]
Ouayah, Mustapha [5 ]
Bouchaou, Lhoussaine [1 ,3 ]
机构
[1] Ibn Zohr Univ, Fac Sci, Appl Geol & Geoenvironm Lab, Agadir 80000, Morocco
[2] Ibn Zohr Univ, Fac Appl Sci, Ait Melloul 86150, Morocco
[3] Mohammed VI Polytech Univ, Int Water Res Inst, Ben Guerir 43150, Morocco
[4] Sultan Moulay Slimane Univ, Ecole Super Technol Beni Mellal, Lab Ingn & Technol Appl LITA, Beni Mellal 23000, Morocco
[5] Sultan Moulay Slimane Univ, Data Sci Sustainable Earth Lab Data4Earth, Beni Mellal 23000, Morocco
关键词
soil erosion; inventory data; performance; robustness; spatial prediction; LANDSLIDE SUSCEPTIBILITY ASSESSMENT; SOIL-EROSION; LOGISTIC-REGRESSION; SEDIMENT YIELD; CLIMATE-CHANGE; WATER EROSION; SLOPE ASPECT; HIGH-ATLAS; CLASSIFICATION; VEGETATION;
D O I
10.3390/soilsystems7020050
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Gully erosion is a worldwide threat with numerous environmental, social, and economic impacts. The purpose of this research is to evaluate the performance and robustness of six machine learning ensemble models based on the decision tree principle: Random Forest (RF), C5.0, XGBoost, treebag, Gradient Boosting Machines (GBMs) and Adaboost, in order to map and predict gully erosion-prone areas in a semi-arid mountain context. The first step was to prepare the inventory data, which consisted of 217 gully points. This database was then randomly subdivided into five percentages of Train/Test (50/50, 60/40, 70/30, 80/20, and 90/10) to assess the stability and robustness of the models. Furthermore, 17 geo-environmental variables were used as potential controlling factors, and several metrics were examined to evaluate the performance of the six models. The results revealed that all of the models used performed well in terms of predicting vulnerability to gully erosion. The C5.0 and RF models had the best prediction performance (AUC = 90.8 and AUC = 90.1, respectively). However, according to the random subdivisions of the database, these models exhibit small but noticeable instability, with high performance for the 80/20% and 70/30% subdivisions. This demonstrates the significance of database refining and the need to test various splitting data in order to ensure efficient and reliable output results.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Thailand Solar Irradiance Map: Analysis of Tree-based Models
    Suwanwimolkul, Suwichaya
    Wangdee, Wijarn
    Hoonchareon, Naebboon
    Thungka, Nuttamon
    Tongamrak, Natanon
    Songsiri, Jitkomut
    18TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS, PMAPS 2024, 2024, : 19 - 24
  • [32] Protein pKa Prediction by Tree-Based Machine Learning
    Chen, Ada Y.
    Lee, Juyong
    Damjanovic, Ana
    Brooks, Bernard R.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (04) : 2673 - 2686
  • [33] Tree-Based Machine Learning Models with Optuna in Predicting Impedance Values for Circuit Analysis
    Lai, Jung-Pin
    Lin, Ying-Lei
    Lin, Ho-Chuan
    Shih, Chih-Yuan
    Wang, Yu-Po
    Pai, Ping-Feng
    MICROMACHINES, 2023, 14 (02)
  • [34] Tree-based Supervised Machine Learning Models For Detecting GPS Spoofing Attacks on UAS
    Aissou, Ghilas
    Slimane, Hadjar Ould
    Benouadah, Selma
    Kaabouch, Naima
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 649 - 653
  • [35] Tree-based machine learning models for prediction of bed elevation around bridge piers
    Rehman, Khawar
    Wang, Yung-Chieh
    Waseem, Muhammad
    Hong, Seung Ho
    PHYSICS OF FLUIDS, 2022, 34 (08)
  • [36] Tree-based interpretable machine learning of the thermodynamic phases
    Yang, Jintao
    Cao, Junpeng
    PHYSICS LETTERS A, 2021, 412
  • [37] Utilization of tree-based machine learning models for predicting low birth weight cases
    de Morais, Flavio Leandro
    Rocha, Elisson da Silva
    Masson, Gabriel
    do Nascimento Filho, Dimas Cassimiro
    Maria Mendes, Katia
    Dourado, Raphael Augusto de Sousa
    Brandao Neto, Waldemar
    Endo, Patricia Takako
    BMC PREGNANCY AND CHILDBIRTH, 2025, 25 (01)
  • [38] Tree-based Machine Learning Methods for Survey Research
    Kern, Christoph
    Klausch, Thomas
    Kreuter, Frauke
    SURVEY RESEARCH METHODS, 2019, 13 (01): : 73 - 93
  • [39] Live Birth Forecasting in Brazillian Health Regions with Tree-based Machine Learning Models
    do Nascimento, Douglas Vieira
    Sousa, Rafael Teixeira
    Costa Silva, Diogo Fernandes
    Pagotto, Daniel do Prado
    Coelho, Clarimar Jose
    Galva Filho, Arlindo Rodrigues
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 85 - 90
  • [40] Cosmic string detection with tree-based machine learning
    Sadr, A. Vafaei
    Farhang, M.
    Movahed, S. M. S.
    Bassett, B.
    Kunz, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (01) : 1132 - 1140