?-pure derived categories of a Grothendieck category

被引:0
|
作者
Wang, Xi [1 ,2 ]
Yao, Hailou [1 ]
Shen, Lei [2 ]
机构
[1] Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
[2] Sichuan Univ Arts & Sci, Coll Math, Dazhou 635000, Peoples R China
基金
中国国家自然科学基金;
关键词
-Presentable object; -pure projective object; -pure acyclic complex; -pure derived category;
D O I
10.1142/S0219498824501974
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let ?? be a Grothendieck category, ? an infinite regular cardinal. We investigate the ?-purity of ??, and the ?-pure acyclic complexes in C(??). Using the ?-presentable objects, we verify that the class of ?-pure acyclic complexes is a thick subcategory of homotopy category. Then we construct ?-pure derived category naturally. Through some specific constructions, we get that bounded above ?-pure derived categories coincide with specific homotopy categories.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Local cohomology in Grothendieck categories
    Savoji, Fatemeh
    Sazeedeh, Reza
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (11)
  • [42] The Grothendieck construction for model categories
    Harpaz, Yonatan
    Prasma, Matan
    ADVANCES IN MATHEMATICS, 2015, 281 : 1306 - 1363
  • [43] COLIMITS OF INJECTIVES IN GROTHENDIECK CATEGORIES
    SIMSON, D
    ARKIV FOR MATEMATIK, 1974, 12 (02): : 161 - 165
  • [44] Grothendieck categories of enriched functors
    Al Hwaeer, Hassan
    Garkusha, Grigory
    JOURNAL OF ALGEBRA, 2016, 450 : 204 - 241
  • [45] Localization on certain Grothendieck categories
    F. Castaño-Iglesias
    N. Chifan
    C. Năstăsescu
    Acta Mathematica Sinica, English Series, 2009, 25 : 379 - 392
  • [46] Grothendieck groups in extriangulated categories
    Zhu, Bin
    Zhuang, Xiao
    JOURNAL OF ALGEBRA, 2021, 574 : 206 - 232
  • [47] GROTHENDIECK RING OF CATEGORY OF ENDOMORPHISMS
    ALMKVIST, G
    JOURNAL OF ALGEBRA, 1974, 28 (03) : 375 - 388
  • [48] Grothendieck groups for categories of complexes
    Foxby, Hans-Bjorn
    Halvorsen, Esben Bistrup
    JOURNAL OF K-THEORY, 2009, 3 (01) : 165 - 203
  • [49] Grothendieck ring of pretriangulated categories
    Bondal, AI
    Larsen, M
    Lunts, VA
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (29) : 1461 - 1495
  • [50] The Derived Pure Spinor Formalism as an Equivalence of Categories
    Elliott, Chris
    Hahner, Fabian
    Saberi, Ingmar
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19