Gate-Attention and Dual-End Enhancement Mechanism for Multi-Label Text Classification

被引:0
|
作者
Cheng, Jieren [1 ,2 ]
Chen, Xiaolong [1 ]
Xu, Wenghang [3 ]
Hua, Shuai [3 ]
Tang, Zhu [1 ]
Sheng, Victor S. [4 ]
机构
[1] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Peoples R China
[2] Hainan Univ, Hainan Blockchain Technol Engn Res Ctr, Haikou 570228, Peoples R China
[3] Hainan Univ, Sch Cyberspace Secur, Haikou 570228, Peoples R China
[4] Texas Tech Univ, Dept Comp Sci, Lubbock, TX 79409 USA
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 77卷 / 02期
基金
中国国家自然科学基金;
关键词
Multi-label text classification; feature extraction; label distribution information; sequence generation;
D O I
10.32604/cmc.2023.042980
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the realm of Multi-Label Text Classification (MLTC), the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches. Many studies in semantic feature extraction have turned to external knowledge to augment the model's grasp of textual content, often overlooking intrinsic textual cues such as label statistical features. In contrast, these endogenous insights naturally align with the classification task. In our paper, to complement this focus on intrinsic knowledge, we introduce a novel Gate-Attention mechanism. This mechanism adeptly integrates statistical features from the text itself into the semantic fabric, enhancing the model's capacity to understand and represent the data. Additionally, to address the intricate task of mining label correlations, we propose a Dual-end enhancement mechanism. This mechanism effectively mitigates the challenges of information loss and erroneous transmission inherent in traditional long short term memory propagation. We conducted an extensive battery of experiments on the AAPD and RCV1-2 datasets. These experiments serve the dual purpose of confirming the efficacy of both the Gate-Attention mechanism and the Dual-end enhancement mechanism. Our final model unequivocally outperforms the baseline model, attesting to its robustness. These findings emphatically underscore the imperativeness of taking into account not just external knowledge but also the inherent intricacies of textual data when crafting potent MLTC models.
引用
收藏
页码:1779 / 1793
页数:15
相关论文
共 50 条
  • [31] Dual-view graph convolutional network for multi-label text classification
    Li, Xiaohong
    You, Ben
    Peng, Qixuan
    Feng, Shaojie
    APPLIED INTELLIGENCE, 2024, 54 (19) : 9363 - 9380
  • [32] Visual Attention in Multi-Label Image Classification
    Luo, Yan
    Jiang, Ming
    Zhao, Qi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 820 - 827
  • [33] Double Attention for Multi-Label Image Classification
    Zhao, Haiying
    Zhou, Wei
    Hou, Xiaogang
    Zhu, Hui
    IEEE ACCESS, 2020, 8 : 225539 - 225550
  • [34] Multi-task Hierarchical Cross-Attention Network for Multi-label Text Classification
    Lu, Junyu
    Zhang, Hao
    Shen, Zhexu
    Shi, Kaiyuan
    Yang, Liang
    Xu, Bo
    Zhang, Shaowu
    Lin, Hongfei
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT II, 2022, 13552 : 156 - 167
  • [35] Multi-Label Text Classification Based on DistilBERT and Label Correlation
    Wang, Xuyang
    Geng, Liuqing
    Zhang, Xin
    Computer Engineering and Applications, 2024, 60 (23) : 168 - 175
  • [36] Multi-label Classification of Legal Text with Fusion of Label Relations
    Song Z.
    Li Y.
    Li D.
    Wang S.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (02): : 185 - 192
  • [37] MULTI-LABEL TEXT CLASSIFICATION WITH A ROBUST LABEL DEPENDENT REPRESENTATION
    Alfaro, Rodrigo
    Allende, Hector
    2011 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS (ICIMCS 2011), VOL 3: COMPUTER-AIDED DESIGN, MANUFACTURING AND MANAGEMENT, 2011, : 211 - 214
  • [38] A Multi-Label Text Classification Model with Enhanced Label Information
    Wang, Min
    Gao, Yan
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 329 - 334
  • [39] A Label Information Aware Model for Multi-label Text Classification
    Tian, Xiaoyu
    Qin, Yongbin
    Huang, Ruizhang
    Chen, Yanping
    NEURAL PROCESSING LETTERS, 2024, 56 (05)
  • [40] A Hybrid BERT Model That Incorporates Label Semantics via Adjustive Attention for Multi-Label Text Classification
    Cai, Linkun
    Song, Yu
    Liu, Tao
    Zhang, Kunli
    IEEE ACCESS, 2020, 8 (08): : 152183 - 152192