On the P3-Coloring of Bipartite Graphs

被引:0
|
作者
Dai, Zemiao [1 ]
Naeem, Muhammad [2 ]
Shafaqat, Zainab [2 ]
Zahid, Manzoor Ahmad [2 ]
Qaisar, Shahid [2 ]
机构
[1] Anhui Vocat Coll Def Technol, Coll Informat Technol, Luan 237011, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Sahiwal 57000, Pakistan
关键词
graph coloring; chromatic number; P-3-coloring; P-3-chromatic number; bipartite graphs; COLORINGS;
D O I
10.3390/math11163487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The advancement in coloring schemes of graphs is expanding over time to solve emerging problems. Recently, a new form of coloring, namely P-3-coloring, was introduced. A simple graph is called a P-3-colorable graph if its vertices can be colored so that all the vertices in each P-3 path of the graph have different colors; this is called the P-3-coloring of the graph. The minimum number of colors required to form a P-3-coloring of a graph is called the P-3-chromatic number of the graph. The aim of this article is to determine the P-3-chromatic number of different well-known classes of bipartite graphs such as complete bipartite graphs, tree graphs, grid graphs, and some special types of bipartite graphs. Moreover, we have also presented some algorithms to produce a P-3-coloring of these classes with a minimum number of colors required.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Balanced Coloring of Bipartite Graphs
    Feige, Uriel
    Kogan, Shimon
    [J]. JOURNAL OF GRAPH THEORY, 2010, 64 (04) : 277 - 291
  • [2] Role coloring bipartite graphs
    Pandey, Sukanya
    Sahlot, Vibha
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 322 : 276 - 285
  • [3] ON EDGE COLORING BIPARTITE GRAPHS
    COLE, R
    HOPCROFT, J
    [J]. SIAM JOURNAL ON COMPUTING, 1982, 11 (03) : 540 - 546
  • [4] On interval Δ-coloring of bipartite graphs
    Magomedov, A. M.
    [J]. AUTOMATION AND REMOTE CONTROL, 2015, 76 (01) : 80 - 87
  • [5] On equitable coloring of bipartite graphs
    Lih, KW
    Wu, PL
    [J]. DISCRETE MATHEMATICS, 1996, 151 (1-3) : 155 - 160
  • [6] On interval Δ-coloring of bipartite graphs
    A. M. Magomedov
    [J]. Automation and Remote Control, 2015, 76 : 80 - 87
  • [7] Strong edge-coloring of (3, Δ)-bipartite graphs
    Bensmail, Julien
    Lagoutte, Aurelie
    Valicov, Petru
    [J]. DISCRETE MATHEMATICS, 2016, 339 (01) : 391 - 398
  • [8] Probabilistic coloring of bipartite and split graphs
    Della Croce, F
    Escoffier, B
    Murat, C
    Paschos, VT
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 202 - 211
  • [9] Interval incidence coloring of bipartite graphs
    Janczewski, Robert
    Malafiejska, Anna
    Malafiejski, Michal
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 166 : 131 - 140
  • [10] Star Coloring Bipartite Planar Graphs
    Kierstead, H. A.
    Kuendgen, Andre
    Timmons, Craig
    [J]. JOURNAL OF GRAPH THEORY, 2009, 60 (01) : 1 - 10