Using Cascade in quantum key distribution

被引:3
|
作者
Tupkary, Devashish [1 ,2 ]
Lutkenhaus, Norbert [1 ,2 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
INFORMATION RECONCILIATION PROTOCOL; SECRET-KEY; CRYPTOGRAPHY; SECURITY;
D O I
10.1103/PhysRevApplied.20.064040
中图分类号
O59 [应用物理学];
学科分类号
摘要
We point out a critical flaw in the analysis of quantum key distribution protocols that employ the twoall two-way communication that occurs during the Cascade protocol. We present a straightforward and elegant alternative approach that addresses this flaw and produces valid key rates. We exemplify our new approach by comparing its key rates with those generated using older, incorrect approaches, for qubit BB84 and decoy-state BB84 protocols. We show that, in many practically relevant situations, our rectified approach produces the same key rate as older, incorrect approaches. However, in other scenarios, our approach produces valid key rates that are lower, highlighting the importance of properly accounting for all two-way communication during Cascade.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Quantum key distribution using a two-way quantum channel
    Lucamarini, Marco
    Mancini, Stefano
    THEORETICAL COMPUTER SCIENCE, 2014, 560 : 46 - 61
  • [22] Quantum key distribution using quantum-correlated photon sources
    Edwards, PJ
    Pollard, GH
    Cheung, WN
    EUROPEAN PHYSICAL JOURNAL D, 2002, 18 (02): : 147 - 153
  • [23] Ultrafast quantum key distribution using fully parallelized quantum channels
    Terhaar, Robin
    Roediger, Jasper
    Haeussler, Matthias
    Wahl, Michael
    Gehring, Helge
    Wolff, Martin A.
    Beutel, Fabian
    Hartmann, Wladick
    Walter, Nicolai
    Hanke, Jonas
    Hanne, Peter
    Walenta, Nino
    Diedrich, Maximilian
    Perlot, Nicolas
    Tillmann, Max
    Roehlicke, Tino
    Ahangarianabhari, Mahdi
    Schuck, Carsten
    Pernice, Wolfram H. P.
    OPTICS EXPRESS, 2023, 31 (02) : 2675 - 2688
  • [24] Quantum key distribution using a series of quantum correlated photon pairs
    Inoue, K
    PHYSICAL REVIEW A, 2005, 71 (03):
  • [25] Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron Nitride
    Al-Juboori, Ali
    Zeng, Helen Zhi Jie
    Nguyen, Minh Anh Phan
    Ai, Xiaoyu
    Laucht, Arne
    Solntsev, Alexander
    Toth, Milos
    Malaney, Robert
    Aharonovich, Igor
    ADVANCED QUANTUM TECHNOLOGIES, 2023, 6 (09)
  • [26] Quantum key distribution protocol using orthogonal product quantum states
    Zhao, Qiu-Yu
    Zhang, De-Xi
    Li, Xiao-Yu
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2008, 37 (03): : 401 - 403
  • [27] Quantum key distribution
    不详
    COMPUTER, 2000, 33 (01) : 42 - 42
  • [28] Secure quantum key distribution using squeezed states
    Gottesman, D
    Preskill, J
    PHYSICAL REVIEW A, 2001, 63 (02):
  • [29] Quantum key distribution using three basis states
    Kak, S
    PRAMANA-JOURNAL OF PHYSICS, 2000, 54 (05): : 709 - 713
  • [30] Using quantum key distribution for cryptographic purposes: A survey
    Alleaume, R.
    Branciard, C.
    Bouda, J.
    Debuisschert, T.
    Dianati, M.
    Gisin, N.
    Godfrey, M.
    Grangier, P.
    Laenger, T.
    Luetkenhaus, N.
    Monyk, C.
    Painchault, P.
    Peev, M.
    Poppe, A.
    Pornin, T.
    Rarity, J.
    Renner, R.
    Ribordy, G.
    Riguidel, M.
    Salvail, L.
    Shields, A.
    Weinfurter, H.
    Zeilinger, A.
    THEORETICAL COMPUTER SCIENCE, 2014, 560 : 62 - 81