Hypergraph factorization for multi-tissue gene expression imputation

被引:9
|
作者
Vinas, Ramon [1 ]
Joshi, Chaitanya K. [1 ]
Georgiev, Dobrik [1 ]
Lin, Phillip [2 ]
Dumitrascu, Bianca [3 ,4 ]
Gamazon, Eric R. [5 ,6 ]
Lio, Pietro [1 ]
机构
[1] Univ Cambridge, Dept Comp Sci & Technol, Cambridge, England
[2] Vanderbilt Univ, Div Genet Med, Med Ctr, Nashville, TN USA
[3] Columbia Univ, Dept Stat, New York, NY 10027 USA
[4] Columbia Univ, Irving Inst Canc Dynam, New York, NY 10027 USA
[5] Univ Cambridge, Vanderbilt Genet Inst, Cambridge, England
[6] Univ Cambridge, Data Sci Inst, MRC Epidemiol Unit, Cambridge, England
基金
美国国家卫生研究院;
关键词
C/EBP FAMILY; TRANSCRIPTION; BLOOD;
D O I
10.1038/s42256-023-00684-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Integrating gene expression across tissues is crucial for understanding coordinated biological mechanisms. Vinas et al. present a neural network for multi-tissue imputation of gene expression, exploiting the shared regulatory architecture of tissues. Integrating gene expression across tissues and cell types is crucial for understanding the coordinated biological mechanisms that drive disease and characterize homoeostasis. However, traditional multi-tissue integration methods either cannot handle uncollected tissues or rely on genotype information, which is often unavailable and subject to privacy concerns. Here we present HYFA (hypergraph factorization), a parameter-efficient graph representation learning approach for joint imputation of multi-tissue and cell-type gene expression. HYFA is genotype agnostic, supports a variable number of collected tissues per individual, and imposes strong inductive biases to leverage the shared regulatory architecture of tissues and genes. In performance comparison on Genotype-Tissue Expression project data, HYFA achieves superior performance over existing methods, especially when multiple reference tissues are available. The HYFA-imputed dataset can be used to identify replicable regulatory genetic variations (expression quantitative trait loci), with substantial gains over the original incomplete dataset. HYFA can accelerate the effective and scalable integration of tissue and cell-type transcriptome biorepositories.
引用
收藏
页码:739 / 753
页数:29
相关论文
共 50 条
  • [21] A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression
    Ndungu, Anne
    Payne, Anthony
    Torres, Jason M.
    van de Bunt, Martijn
    McCarthy, Mark, I
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2020, 106 (02) : 188 - 201
  • [22] Multi-Tissue Gene Expression Pathway Analysis of Emerging Therapeutics in a TGFβ Dependent Mouse Model of Systemic Sclerosis
    Derrett-Smith, Emma C.
    Xu, Shiwen
    Hoyles, Rachel K.
    Denton, Christopher
    [J]. ARTHRITIS & RHEUMATOLOGY, 2016, 68
  • [23] Multi-tissue observation of the long non-coding RNA effects on sexually biased gene expression in cattle
    Yoon, Joon
    Kim, Heebal
    [J]. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2019, 32 (07): : 1044 - 1051
  • [24] A multi-tissue de novo transcriptome assembly and relative gene expression of the vulnerable freshwater salmonid Thymallus ligericus
    Secci-Petretto, Giulia
    Weiss, Steven
    Gomes-dos-Santos, Andre
    Persat, Henri
    Machado, Andre M.
    Vasconcelos, Ines
    Castro, L. Filipe C.
    Froufe, Elsa
    [J]. GENETICA, 2024, 152 (2-3) : 71 - 81
  • [25] Molecular cloning of proopiomelanocortin cDNA and multi-tissue mRNA expression in channel catfish
    Karsi, A
    Waldbieser, GC
    Small, BC
    Liu, ZJ
    Wolters, WR
    [J]. GENERAL AND COMPARATIVE ENDOCRINOLOGY, 2004, 137 (03) : 312 - 321
  • [26] Multi-tissue donor: a reachable option
    Daga Ruiz, D.
    Fernandez Aguirre, C.
    Frutos Sanz, M. A.
    Carballo Ruiz, M.
    Segura Gonzalez, F.
    [J]. MEDICINA INTENSIVA, 2011, 35 (06) : 388 - 392
  • [27] Erythropoietin and normal brain development: Receptor expression determines multi-tissue response
    Chen, Zhi-Yong
    Warin, Renaud
    Noguchi, Constance Tom
    [J]. NEURODEGENERATIVE DISEASES, 2006, 3 (1-2) : 68 - 75
  • [28] A Multi-Tissue Gene Expression Atlas of Water Buffalo (Bubalus bubalis) Reveals Transcriptome Conservation between Buffalo and Cattle
    Si, Jingfang
    Dai, Dongmei
    Li, Kun
    Fang, Lingzhao
    Zhang, Yi
    [J]. GENES, 2023, 14 (04)
  • [29] Multi-Tissue Chromatin Modulation During Hibernation
    Dhillon, Rashpal S.
    Krautkramer, Kimberly A.
    Denu, John M.
    Carey, Hannah V.
    [J]. FASEB JOURNAL, 2017, 31
  • [30] A multi-tissue metabolome atlas of primate pregnancy
    Yu, Dainan
    Wan, Haifeng
    Tong, Chao
    Guang, Lu
    Chen, Gang
    Su, Jiali
    Zhang, Lan
    Wang, Yue
    Xiao, Zhenyu
    Zhai, Jinglei
    Yan, Long
    Ma, Wenwu
    Liang, Kun
    Liu, Taoyan
    Wang, Yuefan
    Peng, Zehang
    Luo, Lanfang
    Yu, Ruoxuan
    Li, Wei
    Qi, Hongbo
    Wang, Hongmei
    Shyh-Chang, Ng
    [J]. CELL, 2024, 187 (03) : 764 - 781.e14