Hypergraph factorization for multi-tissue gene expression imputation

被引:9
|
作者
Vinas, Ramon [1 ]
Joshi, Chaitanya K. [1 ]
Georgiev, Dobrik [1 ]
Lin, Phillip [2 ]
Dumitrascu, Bianca [3 ,4 ]
Gamazon, Eric R. [5 ,6 ]
Lio, Pietro [1 ]
机构
[1] Univ Cambridge, Dept Comp Sci & Technol, Cambridge, England
[2] Vanderbilt Univ, Div Genet Med, Med Ctr, Nashville, TN USA
[3] Columbia Univ, Dept Stat, New York, NY 10027 USA
[4] Columbia Univ, Irving Inst Canc Dynam, New York, NY 10027 USA
[5] Univ Cambridge, Vanderbilt Genet Inst, Cambridge, England
[6] Univ Cambridge, Data Sci Inst, MRC Epidemiol Unit, Cambridge, England
基金
美国国家卫生研究院;
关键词
C/EBP FAMILY; TRANSCRIPTION; BLOOD;
D O I
10.1038/s42256-023-00684-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Integrating gene expression across tissues is crucial for understanding coordinated biological mechanisms. Vinas et al. present a neural network for multi-tissue imputation of gene expression, exploiting the shared regulatory architecture of tissues. Integrating gene expression across tissues and cell types is crucial for understanding the coordinated biological mechanisms that drive disease and characterize homoeostasis. However, traditional multi-tissue integration methods either cannot handle uncollected tissues or rely on genotype information, which is often unavailable and subject to privacy concerns. Here we present HYFA (hypergraph factorization), a parameter-efficient graph representation learning approach for joint imputation of multi-tissue and cell-type gene expression. HYFA is genotype agnostic, supports a variable number of collected tissues per individual, and imposes strong inductive biases to leverage the shared regulatory architecture of tissues and genes. In performance comparison on Genotype-Tissue Expression project data, HYFA achieves superior performance over existing methods, especially when multiple reference tissues are available. The HYFA-imputed dataset can be used to identify replicable regulatory genetic variations (expression quantitative trait loci), with substantial gains over the original incomplete dataset. HYFA can accelerate the effective and scalable integration of tissue and cell-type transcriptome biorepositories.
引用
收藏
页码:739 / 753
页数:29
相关论文
共 50 条
  • [1] Hypergraph factorization for multi-tissue gene expression imputation
    Ramon Viñas
    Chaitanya K. Joshi
    Dobrik Georgiev
    Phillip Lin
    Bianca Dumitrascu
    Eric R. Gamazon
    Pietro Liò
    [J]. Nature Machine Intelligence, 2023, 5 : 739 - 753
  • [2] HDTD: analyzing multi-tissue gene expression data
    Touloumis, Anestis
    Marioni, John C.
    Tavare, Simon
    [J]. BIOINFORMATICS, 2016, 32 (14) : 2193 - 2195
  • [3] A multi-tissue gene expression dataset for hibernating brown bears
    Blair W. Perry
    Michael W. Saxton
    Heiko T. Jansen
    Corey R. Quackenbush
    Brandon D. Evans Hutzenbiler
    Charles T. Robbins
    Joanna L. Kelley
    Omar E. Cornejo
    [J]. BMC Genomic Data, 24
  • [4] A multi-tissue gene expression dataset for hibernating brown bears
    Perry, Blair W.
    Saxton, Michael W.
    Jansen, Heiko T.
    Quackenbush, Corey R.
    Hutzenbiler, Brandon D. Evans D.
    Robbins, Charles T.
    Kelley, Joanna L.
    Cornejo, Omar E.
    [J]. BMC GENOMIC DATA, 2023, 24 (01):
  • [5] A Tissue-aware Gene Selection Approach for Analyzing Multi-tissue Gene Expression Data
    Perscheid, Cindy
    Faber, Lukas
    Kraus, Milena
    Arndt, Paul
    Janke, Michael
    Rehfeldt, Sebastian
    Schubotz, Antje
    Slosarek, Tamara
    Uflacker, Matthias
    [J]. PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2159 - 2166
  • [6] Model-based clustering of multi-tissue gene expression data
    Erola, Pau
    Bjorkegren, Johan L. M.
    Michoel, Tom
    [J]. BIOINFORMATICS, 2020, 36 (06) : 1807 - 1813
  • [7] The multi-tissue gene expression and physiological responses of water deprived Peromyscus eremicus
    Blumstein, Danielle
    MacManes, Matthew
    [J]. BMC GENOMICS, 2024, 25 (01):
  • [8] Multi-tissue gene-expression analysis in a mouse model of thyroid hormone resistance
    Lance D Miller
    Peter McPhie
    Hideyo Suzuki
    Yasuhito Kato
    Edison T Liu
    Sheue-yann Cheng
    [J]. Genome Biology, 5
  • [9] Robust multi-tissue gene panel for cancer detection
    Joseph Irgon
    C Chris Huang
    Yi Zhang
    Dmitri Talantov
    Gyan Bhanot
    Sándor Szalma
    [J]. BMC Cancer, 10
  • [10] Blood-based multi-tissue gene expression inference with Bayesian ridge regression
    Xu, Wenjian
    Liu, Xuanshi
    Leng, Fei
    Li, Wei
    [J]. BIOINFORMATICS, 2020, 36 (12) : 3788 - 3794