Approximation by λ-Bernstein type operators on triangular domain

被引:1
|
作者
Cai, Qing-Bo [1 ,2 ]
Khan, Asif [3 ]
Mansoori, Mohd Shanawaz [3 ]
Iliyas, Mohammad [3 ]
Khan, Khalid [4 ]
机构
[1] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
[2] Quanzhou Normal Univ, Fujian Prov Key Lab Data Intens Comp, Quanzhou 362000, Peoples R China
[3] Aligarh Muslim Univ, Dept Math, Aligarh, India
[4] SC & SS JNU, Sch Comp & Syst Sci, New Delhi 110067, India
关键词
  -Bernstein operators; Triangular domain; Product and Boolean sum operator; Modulus of continuity; Error evaluation; INTERPOLATION; Q)-ANALOG; (P;
D O I
10.2298/FIL2306941C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
( ) ( ) Abstract. In this paper, a new type of lambda-Bernstein operators Bwm,lambda g(w, z) and Bz )n,lambda g(w, z), their Products ( ( ) ( ) ( ) Pmn,lambda g(w, z), Qnm,lambda g(w, z), and their Boolean sums Smn,lambda g(w, z), Tnm,lambda g(w, z) are constructed on trian-gle Rh with parameter lambda is an element of [-1, 1]. Convergence theorem for Lipschitz type continuous functions and a Voronovskaja-type asymptotic formula are studied for these operators. Remainder terms for error evalua-tion by using the modulus of continuity are discussed. Graphical representations are added to demonstrate the consistency of theoretical findings for the operators approximating functions on the triangular do-main. Also, we show that the parameter lambda will provide flexibility in approximation; in some cases, the approximation will be better than its classical analogue.
引用
收藏
页码:1941 / 1958
页数:18
相关论文
共 50 条
  • [41] Approximation by Bernstein-Durrmeyer-type operators in compact disks
    Mahmudov, N. I.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (07) : 1231 - 1238
  • [42] ON APPROXIMATION PROPERTIES OF A NEW TYPE OF BERNSTEIN-DURRMEYER OPERATORS
    Acar, Tuncer
    Aral, Ali
    Gupta, Vijay
    [J]. MATHEMATICA SLOVACA, 2015, 65 (05) : 1107 - 1122
  • [43] Approximation by Kantorovich Type q-Bernstein-Stancu Operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (01) : 85 - 107
  • [44] Approximation for a generalization of Bernstein operators
    Guofen Liu
    Xiuzhong Yang
    [J]. Journal of Inequalities and Applications, 2016
  • [45] APPROXIMATION PROPERTIES OF CERTAIN BERNSTEIN-STANCU TYPE OPERATORS
    Acu, Ana-Maria
    Dogru, Ogun
    Muraru, Carmen Violeta
    Radu, Voichita Adriana
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (03): : 687 - 702
  • [46] Better Numerical Approximation by λ-Durrmeyer-Bernstein Type Operators
    Radu, Voichita Adriana
    Agrawal, Purshottam Narain
    Singh, Jitendra Kumar
    [J]. FILOMAT, 2021, 35 (04) : 1405 - 1419
  • [47] Approximation Properties of Generalized λ-Bernstein-Kantorovich Type Operators
    Kumar, Ajay
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 505 - 520
  • [48] On uniform approximation by some classical Bernstein-type operators
    de la Cal, J
    Cárcamo, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) : 625 - 638
  • [49] Statistical Approximation of the q-Bernstein-Durrmeyer Type Operators
    Ren, Mei-Ying
    [J]. FUZZY SYSTEMS & OPERATIONS RESEARCH AND MANAGEMENT, 2016, 367 : 117 - 124
  • [50] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12