On the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces

被引:0
|
作者
Mata-Gutierrez, O. [1 ]
Roa-Leguizamon, L. [2 ]
Torres-Lopez, H. [3 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Dept Matemat, Ave Revoluc 1500, Guadalajara, Jalisco, Mexico
[2] Univ Los Andes, Dept Matemat, Carrera 1 18A-12,111 711, Bogota, Colombia
[3] Univ Autonoma Zacatecas, Conacyt UA Matemat, Calzada Solidar Entronque Paseo La Bufa, Zacatecas 98000, Zac, Mexico
关键词
elementary transformation; moduli of vector bundles; moduli of sheaves; Hilbert scheme; ELEMENTARY TRANSFORMATIONS; VECTOR-BUNDLES;
D O I
10.1017/S0017089523000010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to determine a bound of the dimension of an irreducible component of the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces. Let X be a nonsingular irreducible complex surface, and let E be a vector bundle of rank n on X. We use the m-elementary transformation of E at a point x is an element of X to show that there exists an embedding from the Grassmannian variety G(E-x, m) into the moduli space of torsion-free sheaves M-X,M-H(n; c(1), c(2) + m) which induces an injective morphism from X x M-X,M-H(n; c(1), c(2)) to Hilb(MX,H(n; c1, c2+m)).
引用
收藏
页码:414 / 429
页数:16
相关论文
共 50 条