Laser-induced manganese oxide/graphene composite electrodes with commercial-level mass loading towards high-performance supercapacitors

被引:7
|
作者
Yu, Xing [1 ]
Zhang, Jixiang [1 ]
Li, Nian [2 ,4 ]
Song, Yanping [2 ,3 ,4 ]
Kang, Jun [1 ]
Zhang, Shudong [2 ,4 ]
Liu, Cui [2 ,4 ]
Li, Zhao [2 ,3 ,4 ]
Pu, Jingwen [1 ]
Hong, Na [2 ,3 ,4 ]
Xi, Min [2 ,4 ]
Wang, Zhenyang [2 ,4 ]
机构
[1] Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, Chongqing, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China
[4] Chinese Acad Sci, Hefei Inst Phys Sci, Key Lab Photovolta & Energy Conservat Mat, Hefei 230031, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite electrode; Commercial-level mass loading; Pseudocapacitance metal oxide; Polyimide foam; Supercapacitor; INDUCED GRAPHENE; MNO2; NANOCOMPOSITES; NANOFLOWERS; RESISTANCE; NANOSHEETS; CAPTURE; FIBERS; FILMS; OXIDE;
D O I
10.1016/j.jallcom.2023.172435
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Combining of graphene with pseudocapacitance metal oxide is effective to construct supercapacitor electrode with high energy storage capacity. However, balancing the contradiction between high load of metal oxide and high stability of electrode is still challenging. Herein, a novel supercapacitor electrode composed of 3D graphene and manganese oxide is in-situ fabricated by laser carbonization of polyimide (PI) foam loaded with manganese acetate precursor. Due to the rich porous structure and super hygroscopicity of PI foam, high content manganese acetate is uniformly loaded into the network of PI foam. Under laser irradiation, PI foam is carbonized to form 3D porous graphene, while the generation of MnO-Mn3O4 and its uniform loading on graphene is achieved synchronously. The obtained composite electrode exhibits a commercial-level mass loading up to 8 mg cm-2, with a 48.6% weight ratio of MnO-Mn3O4. As a result, an ultra-high specific capacitance of 1525 mF cm-2 can be obtained for the composite electrode at the optimal doping concentration of 0.3 mol L- 1. Notably, the composite electrode also exhibits excellent cycling stability of 94.75% retention rate after 6000 cycles. The maximum area specific capacitance of the micro supercapacitor with PVA/LiCl gel electrolyte is 410.19 mF cm-2, the maximum energy density and power density are 82.04 mu Wh cm-2 and 400 mu W cm-2, respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Graphene oxide - Ionic liquid composite electrolytes for safe and high-performance supercapacitors
    Pereira, Neuma das M.
    Trigueiro, Joao Paulo C.
    Monteiro, Izabella de F.
    Montoro, Luciano A.
    Silva, Glaura G.
    ELECTROCHIMICA ACTA, 2018, 259 : 783 - 792
  • [32] Polyoxometalate-Incorporated Metallacalixarene@Graphene Composite Electrodes for High-Performance Supercapacitors
    Hou, Yan
    Chai, Dongfeng
    Li, Bonan
    Pang, Haijun
    Ma, Huiyuan
    Wang, Xinming
    Tan, Lichao
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (23) : 20845 - 20853
  • [33] High-Performance Pseudocapacitive Microsupercapacitors from Laser-Induced Graphene
    Li, Lei
    Zhang, Jibo
    Peng, Zhiwei
    Li, Yilun
    Gao, Caitian
    Ji, Yongsung
    Ye, Ruquan
    Kim, Nam Dong
    Zhong, Qifeng
    Yang, Yang
    Fei, Huilong
    Ruan, Gedeng
    Tour, James M.
    ADVANCED MATERIALS, 2016, 28 (05) : 838 - 845
  • [34] High-Performance Electrothermal Film Based on Laser-Induced Graphene
    Yang, Fei
    Yu, Chen
    Zhang, Li
    Zhang, Yan
    Wei, Bin
    Liu, Johan
    Zhang, Yong
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (11)
  • [35] A manganese oxide/biomass porous carbon composite for high-performance supercapacitor electrodes
    Li, Haotong
    Yang, Haixia
    Sun, Huijun
    Huang, Yuanyuan
    An, Ping
    Yunhua, Yu
    Zhao, Haodong
    ELECTROCHIMICA ACTA, 2024, 473
  • [36] High-performance supercapacitor electrode at commercial-level mass loading from N-enriched activated carbon derived from soybean dregs
    Zhao, Yihong
    Qi, Chengyuan
    Zou, Qinglong
    Sun, Wei
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [37] High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure
    Ma, Jun
    Tang, Shaochun
    Syed, Junaid Ali
    Su, Dongyun
    Meng, Xiangkang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2018, 34 (07) : 1103 - 1109
  • [38] High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure
    Jun Ma
    Shaochun Tang
    Junaid Ali Syed
    Dongyun Su
    Xiangkang Meng
    JournalofMaterialsScience&Technology, 2018, 34 (07) : 1103 - 1109
  • [39] Programmable patterning fabrication of laser-induced graphene-MXene composite electrodes for flexible planar supercapacitors
    Xiu-Yan Fu
    Yu-Yin Zhang
    Chang-Jing Ma
    Hao-Bo Jiang
    OPTICS LETTERS, 2022, 47 (06) : 1502 - 1505
  • [40] Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading
    Vijayakumar, Manavalan
    Santhosh, Ravichandran
    Adduru, Jyothirmayi
    Rao, Tata Narasinga
    Karthik, Mani
    CARBON, 2018, 140 : 465 - 476