Response solutions of 2-dimensional degenerate systems under quasi-periodic perturbations

被引:2
|
作者
Ma, Zhichao [1 ,2 ]
Qu, Ru [1 ]
Xu, Junxiang [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[2] Nanjing Forestry Univ, Coll Sci, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-periodic system; Degenerate equilibrium point; KAM iteration; Response solution; TORI;
D O I
10.1016/j.jde.2023.03.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers quasi-periodic perturbations of 2-dimensional degenerate systems. It is proved that if the equilibrium point of the unperturbed system is hyperbolic-type degenerate, then the perturbed sys-tem has a small response solution. The proof is based on the topological degree theory and some KAM techniques developed in [3]. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:500 / 522
页数:23
相关论文
共 50 条
  • [31] Quasi-periodic solutions of Schrodinger equations with quasi-periodic forcing in higher dimensional spaces
    Zhang, Min
    Rui, Jie
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3670 - 3693
  • [32] PERTURBATIONS OF LINEAR-SYSTEMS WITH QUASI-PERIODIC COEFFICIENTS
    FILIPPOV, AF
    DIFFERENTIAL EQUATIONS, 1990, 26 (08) : 984 - 988
  • [33] IDENTIFICATION OF SPATIALLY CONFINED STATES IN 2-DIMENSIONAL QUASI-PERIODIC LATTICES
    RIETH, T
    SCHREIBER, M
    PHYSICAL REVIEW B, 1995, 51 (22): : 15827 - 15832
  • [34] Response Solutions in Degenerate Oscillators Under Degenerate Perturbations
    Si, Wen
    Yi, Yingfei
    ANNALES HENRI POINCARE, 2022, 23 (01): : 333 - 360
  • [35] Response Solutions in Degenerate Oscillators Under Degenerate Perturbations
    Wen Si
    Yingfei Yi
    Annales Henri Poincaré, 2022, 23 : 333 - 360
  • [36] Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems with Nonmonotonic Rotation
    Kirill E. Morozov
    Albert D. Morozov
    Regular and Chaotic Dynamics, 2024, 29 : 65 - 77
  • [37] Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems with Nonmonotonic Rotation
    Morozov, Kirill E.
    Morozov, Albert D.
    REGULAR & CHAOTIC DYNAMICS, 2024, 29 (01): : 65 - 77
  • [38] Periodic and Quasi-Periodic Solutions for Reversible Unbounded Perturbations of Linear Schrodinger Equations
    Lou, Zhaowei
    Si, Jianguo
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (01) : 117 - 161
  • [39] Dynamical stability of quasi-periodic response solutions in planar conservative systems
    Hanssmann, Heinz
    Simo, Carles
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (03): : 151 - 166
  • [40] Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential
    Zhang, Min
    Wang, Yi
    Li, Yan
    AIMS MATHEMATICS, 2021, 6 (01): : 643 - 674