A conformable artificial neural network model to improve the void fraction prediction in helical heat exchangers

被引:3
|
作者
Hernandez, J. A. [1 ]
Solis-Perez, J. E. [2 ]
Parrales, A. [3 ]
Mata, A. [4 ]
Colorado, D. [5 ]
Huicoche, A. [1 ]
Gomez-Aguilar, J. F. [6 ]
机构
[1] Univ Autonoma Estado Morelos, Ctr Invest Ingn & Ciencias Aplicadas, Ave Univ 1001 Col Chamilpa, Cuernavaca 62209, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Escuela Nacl Estudios Super Unidad Juriquilla, Blvd Juriquilla 3001, Juriquilla 76230, Queretaro, Mexico
[3] Univ Autonoma Estado Morelos, CONAHCyT Ctr Invest Ingn & Ciencias Aplicadas, Ave Univ 1001 Col Chamilpa, Cuernavaca 62209, Morelos, Mexico
[4] Univ Autonoma Estado Morelos, Ctr Invest Ingn & Ciencias Aplicadas, POSGRADO, Ave Univ 1001 Col Chamilpa, Cuernavaca 62209, Morelos, Mexico
[5] Univ Veracruzana, Ctr Invest Recursos Energet & Sustentables, Ave Univ Km 7-5 Col St Isabel, Coatzacoalcos 96535, Veracruz, Mexico
[6] CONAHCyT Tecnol Nacl Mexico, CENIDET, Interior Internado Palmira Col S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Conformable artificial neural network; Conformable activation function; Conformable calculus; Fractional activation functions; Void fraction prediction; Helical heat exchanger; FLOW;
D O I
10.1016/j.icheatmasstransfer.2023.107035
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study proposes a conformable artificial neural network model to improve the void fraction prediction in helical heat exchangers. The obtained model had only one neuron in the hidden layer, achieving an algebraic structure simpler than the classic training. Furthermore, this model satisfies the interval condition of [0-1] and is a function of vapor fraction, density ratio, and viscosity ratio. The new conformable ANN void fraction satisfactorily described the two-phase flow in the systems mentioned above because the outlet temperatures were predicted with 2.96% of RMSE, lower than those obtained with other void fraction model analyses. This paper describes the conformable Logistic Sigmoid Transfer Function (CLOGSIG) and its application advantages in the ANN training process. Using CLOGSIG as a transfer function can get different sinusoidal behaviors that can modify the data distribution around the function's sinusoidal area, allowing better data adaptability and improving network performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Prediction Model Based on an Artificial Neural Network for Rock Porosity
    Hany Gamal
    Salaheldin Elkatatny
    [J]. Arabian Journal for Science and Engineering, 2022, 47 : 11211 - 11221
  • [42] Air pollution prediction by using an artificial neural network model
    Heidar Maleki
    Armin Sorooshian
    Gholamreza Goudarzi
    Zeynab Baboli
    Yaser Tahmasebi Birgani
    Mojtaba Rahmati
    [J]. Clean Technologies and Environmental Policy, 2019, 21 : 1341 - 1352
  • [43] Prediction of molten pool width with artificial neural network model
    Wang, Teng
    Gao, Xiangdong
    [J]. ADVANCED COMPOSITE MATERIALS, PTS 1-3, 2012, 482-484 : 2210 - 2213
  • [44] Air pollution prediction by using an artificial neural network model
    Maleki, Heidar
    Sorooshian, Armin
    Goudarzi, Gholamreza
    Baboli, Zeynab
    Birgani, Yaser Tahmasebi
    Rahmati, Mojtaba
    [J]. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2019, 21 (06) : 1341 - 1352
  • [45] THE PREDICTION MODEL OF WATER QUALITY ON THE BP ARTIFICIAL NEURAL NETWORK
    Yan, Cheng-Ming
    [J]. ENERGY AND MECHANICAL ENGINEERING, 2016, : 250 - 256
  • [46] An Improved Artificial Neural Network Model for Effective Diabetes Prediction
    Bukhari, Muhammad Mazhar
    Alkhamees, Bader Fahad
    Hussain, Saddam
    Gumaei, Abdu
    Assiri, Adel
    Ullah, Syed Sajid
    [J]. Complexity, 2021, 2021
  • [47] Risk Prediction Model: Statistical and Artificial Neural Network Approach
    Paiman, Nuur Azreen
    Hariri, Azian
    Masood, Ibrahim
    [J]. 7TH INTERNATIONAL CONFERENCE ON MECHANICAL AND MANUFACTURING ENGINEERING (ICME'16), 2017, 1831
  • [48] Artificial neural network model for earthquake prediction with radon monitoring
    Kulahci, Fatih
    Inceoz, Murat
    Dogru, Mahmut
    Aksoy, Ercan
    Baykara, Oktay
    [J]. APPLIED RADIATION AND ISOTOPES, 2009, 67 (01) : 212 - 219
  • [49] Hybrid Model of Molten Steel Temperature Prediction Based on Ladle Heat Status and Artificial Neural Network
    Fei He
    Dong-feng He
    An-jun Xu
    Hong-bing Wang
    Ni-yuan Tian
    [J]. Journal of Iron and Steel Research International, 2014, 21 : 181 - 190
  • [50] Hybrid Model of Molten Steel Temperature Prediction Based on Ladle Heat Status and Artificial Neural Network
    He, Fei
    He, Dong-feng
    Xu, An-jun
    Wang, Hong-bing
    Tian, Nai-yuan
    [J]. JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2014, 21 (02) : 181 - 190