A conformable artificial neural network model to improve the void fraction prediction in helical heat exchangers

被引:3
|
作者
Hernandez, J. A. [1 ]
Solis-Perez, J. E. [2 ]
Parrales, A. [3 ]
Mata, A. [4 ]
Colorado, D. [5 ]
Huicoche, A. [1 ]
Gomez-Aguilar, J. F. [6 ]
机构
[1] Univ Autonoma Estado Morelos, Ctr Invest Ingn & Ciencias Aplicadas, Ave Univ 1001 Col Chamilpa, Cuernavaca 62209, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Escuela Nacl Estudios Super Unidad Juriquilla, Blvd Juriquilla 3001, Juriquilla 76230, Queretaro, Mexico
[3] Univ Autonoma Estado Morelos, CONAHCyT Ctr Invest Ingn & Ciencias Aplicadas, Ave Univ 1001 Col Chamilpa, Cuernavaca 62209, Morelos, Mexico
[4] Univ Autonoma Estado Morelos, Ctr Invest Ingn & Ciencias Aplicadas, POSGRADO, Ave Univ 1001 Col Chamilpa, Cuernavaca 62209, Morelos, Mexico
[5] Univ Veracruzana, Ctr Invest Recursos Energet & Sustentables, Ave Univ Km 7-5 Col St Isabel, Coatzacoalcos 96535, Veracruz, Mexico
[6] CONAHCyT Tecnol Nacl Mexico, CENIDET, Interior Internado Palmira Col S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Conformable artificial neural network; Conformable activation function; Conformable calculus; Fractional activation functions; Void fraction prediction; Helical heat exchanger; FLOW;
D O I
10.1016/j.icheatmasstransfer.2023.107035
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study proposes a conformable artificial neural network model to improve the void fraction prediction in helical heat exchangers. The obtained model had only one neuron in the hidden layer, achieving an algebraic structure simpler than the classic training. Furthermore, this model satisfies the interval condition of [0-1] and is a function of vapor fraction, density ratio, and viscosity ratio. The new conformable ANN void fraction satisfactorily described the two-phase flow in the systems mentioned above because the outlet temperatures were predicted with 2.96% of RMSE, lower than those obtained with other void fraction model analyses. This paper describes the conformable Logistic Sigmoid Transfer Function (CLOGSIG) and its application advantages in the ANN training process. Using CLOGSIG as a transfer function can get different sinusoidal behaviors that can modify the data distribution around the function's sinusoidal area, allowing better data adaptability and improving network performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Performance prediction of heat exchangers based on model and artificial neural network
    Ding, GL
    Zhang, CL
    [J]. CRYOGENICS AND REFRIGERATION - PROCEEDINGS OF ICCR'2003, 2003, : 536 - 539
  • [2] New void fraction equations for two-phase flow in helical heat exchangers using artificial neural networks
    Parrales, A.
    Colorado, D.
    Diaz-Gomez, J. A.
    Huicothea, A.
    Alvarez, A.
    Hernandez, J. A.
    [J]. APPLIED THERMAL ENGINEERING, 2018, 130 : 149 - 160
  • [3] BOILING HEAT TRANSFER PREDICTION IN HELICAL COILS UNDER TERRESTRIAL GRAVITY WITH ARTIFICIAL NEURAL NETWORK
    Liang, Xing
    Xie, Yongqi
    Day, Rodney
    Wu, Hongwei
    [J]. 4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,
  • [4] Prediction of two-phase flow distribution in microchannel heat exchangers using artificial neural network
    Giannetti, Niccolo
    Redo, Mark Anthony
    Sholahudin
    Jeong, Jongsoo
    Yamaguchi, Seiichi
    Saito, Kiyoshi
    Kim, Hyunyoung
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION, 2020, 111 : 53 - 62
  • [5] Dynamic prediction and control of heat exchangers using artificial neural networks
    Díaz, G
    Sen, M
    Yang, KT
    McClain, RL
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (09) : 1671 - 1679
  • [6] An artificial neural network model for prediction of logD
    Waldman, Marvin
    Fraczkiewicz, Robert
    Woltosz, Walter S.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [7] Artificial neural network model for PMV prediction
    Zhang, J
    Zhang, WJ
    Zong, LH
    [J]. ISHVAC 99: 3RD INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING, VOLS 1 AND 2, 1999, : 214 - 219
  • [8] Prediction of void fraction for gas-liquid flow in horizontal, upward and downward inclined pipes using artificial neural network
    Azizi, Sadra
    Ahmadloo, Ebrahim
    Awad, Mohamed M.
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2016, 87 : 35 - 44
  • [9] Improve artificial neural network for medical analysis, diagnosis and prediction
    Fei, Yang
    Li, Wei-qin
    [J]. JOURNAL OF CRITICAL CARE, 2017, 40 : 293 - 293
  • [10] Prediction of heat transfer coefficient, pressure drop, and overall cost of double-pipe heat exchangers using the artificial neural network
    Colak, Andac Batur
    Acikgoz, Ozgen
    Mercan, Hatice
    Dalkilic, Ahmet Selim
    Wongwises, Somchai
    [J]. CASE STUDIES IN THERMAL ENGINEERING, 2022, 39