Study of diagnosis for rotating machinery in advanced nuclear reactor based on deep learning model

被引:2
|
作者
Sun, Yuanli [1 ]
Wang, Hang [2 ]
机构
[1] Tsinghua Univ, Nucl Res Inst, Beijing, Peoples R China
[2] Harbin Engn Univ, Nucl Sci & Technol, Harbin, Peoples R China
关键词
fault diagnosis model; deep learning; rotating machine; advanced nuclear reactor; improved transformer model; FAULT-DIAGNOSIS;
D O I
10.3389/fenrg.2023.1210703
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Many types of rotating mechanical equipment, such as the primary pump, turbine, and fans, are key components of fourth-generation (Gen IV) advanced reactors. Given that these machines operate in challenging environments with high temperatures and liquid metal corrosion, accurate problem identification and health management are essential for keeping these machines in good working order. This study proposes a deep learning (DL)-based intelligent diagnosis model for the rotating machinery used in fast reactors. The diagnosis model is tested by identifying the faults of bearings and gears. Normalization, augmentation, and splitting of data are applied to prepare the datasets for classification of faults. Multiple diagnosis models containing the multi-layer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), and residual network (RESNET) are compared and investigated with the Case Western Reserve University datasets. An improved Transformer model is proposed, and an enhanced embeddings generator is designed to combine the strengths of the CNN and transformer. The effects of the size of the training samples and the domain of data preprocessing, such as the time domain, frequency domain, time-frequency domain, and wavelet domain, are investigated, and it is found that the time-frequency domain is most effective, and the improved Transformer model is appropriate for the fault diagnosis of rotating mechanical equipment. Because of the low probability of the occurrence of a fault, the imbalanced learning method should be improved in future studies.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A survey on fault diagnosis of rotating machinery based on machine learning
    Wang, Qi
    Huang, Rui
    Xiong, Jianbin
    Yang, Jianxiang
    Dong, Xiangjun
    Wu, Yipeng
    Wu, Yinbo
    Lu, Tiantian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [32] Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhang L.
    Hu Y.
    Zhao L.
    Zhang H.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2023, 34 (08): : 966 - 975
  • [33] A novel unsupervised deep learning network for intelligent fault diagnosis of rotating machinery
    Zhao, Xiaoli
    Jia, Minping
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (06): : 1745 - 1763
  • [34] A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
    Shao Haidong
    Jiang Hongkai
    Zhao Huiwei
    Wang Fuan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 95 : 187 - 204
  • [35] Fault diagnosis of rotating machinery based on improved deep residual network
    Hou Z.
    Wang H.
    Zhou L.
    Fu Q.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (06): : 2051 - 2059
  • [36] INTELLIGENT FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON DEEP NEURAL NETWORK
    Zhang, Xiuchun
    Xia, Hong
    Liu, Yongkang
    Zhu, Shaomin
    Jiang, Yingying
    Zhang, Jiyu
    Liu, Jie
    Yin, Wenzhe
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 1, ICONE31 2024, 2024,
  • [37] Deep Reinforcement Learning-Based Online Domain Adaptation Method for Fault Diagnosis of Rotating Machinery
    Li, Guoqiang
    Wu, Jun
    Deng, Chao
    Xu, Xuebing
    Shao, Xinyu
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) : 2796 - 2805
  • [38] A novel intelligent fault diagnosis method of rotating machinery based on deep learning and PSO-SVM
    Shi, Peiming
    Liang, Kai
    Han, Dongying
    Zhang, Ying
    JOURNAL OF VIBROENGINEERING, 2017, 19 (08) : 5932 - 5946
  • [39] Fault diagnosis method of rotating machinery based on deep Q-learning and continuous wavelet transform
    Chen R.-X.
    Zhou J.
    Hu X.-L.
    Han X.-B.
    Zhu S.-K.
    Zhang X.
    Hu, Xiao-Lin (huxl0918@163.com), 1600, Nanjing University of Aeronautics an Astronautics (34): : 1092 - 1100
  • [40] Fault diagnosis of rotating machinery based on graph data deep mining
    Liu, Jie
    Yang, Chaoying
    Zhou, Kaibo
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (09): : 1 - 5