Effect of anode gas circulation on deuterium isotope separation by polymer electrolyte fuel cell

被引:1
|
作者
Nago, Toranosuke [1 ]
Furusawa, Koichiro [1 ]
Ueda, Mikito [1 ]
Matsushima, Hisayoshi [1 ]
机构
[1] Hokkaido Univ, Fac Engn, Kita 13 Nishi 8, Sapporo, Hokkaido 0608628, Japan
关键词
Separation factor; Hydrogen isotopes; Fuel cell; Gas circulation; H/D;
D O I
10.1016/j.ijhydene.2023.07.295
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Separation of hydrogen isotopes is an important process in materials science, biomedical research, and nuclear fields. In this study, we used a polymer electrolyte fuel cell to separate protium (H) and deuterium (D). Here a circulation system recycled hydrogen gas at the anode was used. H and D were enriched in the gas and water phases, respectively. The separation efficiency depends on the gas flow rate through the parameter l, which de -scribes the stoichiometric ratio of circulation gas to feed gas. H and D were simultaneously enriched in their respective phases. The circulation system prolonged the gas circulation time in the system to improve the separation efficiency.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1598 / 1603
页数:6
相关论文
共 50 条
  • [21] Direct Glucose Fuel Cell: Noble Metal Catalyst Anode Polymer Electrolyte Membrane Fuel Cell with Glucose Fuel
    Apblett, Christopher A.
    Ingersoll, David
    Sarangapani, Sarang
    Kelly, Michael
    Atanassov, Plamen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (01) : B86 - B89
  • [22] New strategy for reversal tolerant anode for automotive polymer electrolyte fuel cell
    Chanho Pak
    Seung Woo Lee
    Chaekyung Baik
    Bong Ho Lee
    Dae Jong You
    Eunyoung You
    ChineseChemicalLetters, 2019, 30 (06) : 1186 - 1189
  • [23] Rate limiting proton hydration in the anode of the polymer electrolyte membrane fuel cell
    Meland, Anne-Kristine
    Kjelstrup, Signe
    Bedeaux, Dick
    JOURNAL OF MEMBRANE SCIENCE, 2006, 282 (1-2) : 96 - 108
  • [24] Theory of water management at the anode side of polymer electrolyte fuel cell membranes
    Okada, T
    Xie, G
    Tanabe, Y
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 413 (1-2): : 49 - 65
  • [25] New strategy for reversal tolerant anode for automotive polymer electrolyte fuel cell
    Pak, Chanho
    Lee, Seung Woo
    Baik, Chaekyung
    Lee, Bong Ho
    You, Dae Jong
    You, Eunyoung
    CHINESE CHEMICAL LETTERS, 2019, 30 (06) : 1186 - 1189
  • [26] Microelectrode simulation of anode in polymer electrolyte fuel cells
    Katakura, K
    Hinatsu, JT
    Inatomi, K
    Inaba, M
    Ogumi, Z
    Takehara, Z
    DENKI KAGAKU, 1996, 64 (06): : 711 - 717
  • [27] Effect of Flow Field Pattern and Microporous Layer on Gas Purge of a Polymer Electrolyte Fuel Cell
    Nakajima, Hironori
    Kitahara, Tatsumi
    Konomi, Toshiaki
    POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01): : 937 - 944
  • [28] Water transport in polymer electrolyte membrane fuel cell: Degradation effect of gas diffusion layer
    Park, Jooyoung
    Oh, Hwanyeong
    Park, Hanwook
    Moon, Jong Woon
    Lee, Sang Joon
    Jung, Sung Yong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (07) : 9058 - 9070
  • [29] Cathode Exhaust Gas Recirculation for Polymer Electrolyte Fuel Cell Stack
    Becker, F.
    Pillath, F.
    Kallo, J.
    FUEL CELLS, 2018, 18 (05) : 568 - 575
  • [30] Microscopic analysis of Polymer Electrolyte Fuel Cell by lattice gas automata
    Yoshimoto, Takashi
    Inoue, Gen
    Matsukuma, Yosuke
    Minemoto, Masaki
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2006, 39 (05) : 537 - 544