Application value of CT radiomic nomogram in predicting T790M mutation of lung adenocarcinoma

被引:3
|
作者
Li, Xiumei [1 ]
Chen, Jianwei [2 ]
Zhang, Chengxiu [3 ]
Han, Zewen [1 ]
Zheng, Xiuying [1 ]
Cao, Dairong [1 ,4 ,5 ,6 ]
机构
[1] Fujian Med Univ, Affiliated Hosp 1, Dept Anesthesiol, Fuzhou 350005, Fujian, Peoples R China
[2] Fujian Prov Canc Hosp, Dept Pathol, Fuzhou 350014, Fujian, Peoples R China
[3] East China Normal Univ, Sch Phys & Elect Sci, Shanghai Key Lab Magnet Resonance, Shanghai 200062, Peoples R China
[4] Fujian Med Univ, Affiliated Hosp 1, Natl Reg Med Ctr, Dept Radiol, Binhai Campus, Fuzhou 350212, Fujian, Peoples R China
[5] Fujian Med Univ, Affiliated Hosp 1, Fujian Key Lab Precis Med Canc, Fuzhou 350005, Fujian, Peoples R China
[6] Fujian Med Univ, Affiliated Hosp 1, Key Lab Radiat Biol, Fujian Higher Educ Inst, Fuzhou 200062, Peoples R China
关键词
Lung adenocarcinoma; Radiomics; Computed tomography; T790M; CANCER;
D O I
10.1186/s12890-023-02609-y
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
BackgroundThe purpose of this study was to develop a radiomic nomogram to predict T790M mutation of lung adenocarcinoma base on non-enhanced CT lung images.MethodsThis retrospective study reviewed demographic data and lung CT images of 215 lung adenocarcinoma patients with T790M gene test results. 215 patients (including 52 positive) were divided into a training set (n = 150, 36 positive) and an independent test set (n = 65, 16 positive). Multivariate logistic regression was used to select demographic data and CT semantic features to build clinical model. We extracted quantitative features from the volume of interest (VOI) of the lesion, and developed the radiomic model with different feature selection algorithms and classifiers. The models were trained by a 5-fold cross validation strategy on the training set and assessed on the test set. ROC was used to estimate the performance of the clinical model, radiomic model, and merged nomogram.ResultsThree demographic features (gender, smoking, emphysema) and ten radiomic features (Kruskal-Wallis as selection algorithm, LASSO Logistic Regression as classifier) were determined to build the models. The AUC of the clinical model, radiomic model, and nomogram in the test set were 0.742(95%CI, 0.619-0.843), 0.810(95%CI, 0.696-0.907), 0.841(95%CI, 0.743-0.938), respectively. The predictive efficacy of the nomogram was better than the clinical model (p = 0.042). The nomogram predicted T790M mutation with cutoff value was 0.69 and the score was above 130.ConclusionThe nomogram developed in this study is a non-invasive, convenient, and economical method for predicting T790M mutation of lung adenocarcinoma, which has a good prospect for clinical application.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] T790M Mutation and Clinical Outcomes with Genuine Osimertinib
    Parikh, Purvish M.
    INDIAN JOURNAL OF MEDICAL AND PAEDIATRIC ONCOLOGY, 2019, 40 (01) : 7 - 8
  • [33] Sequential occurrence of T790M mutation and small cell lung cancer transformation in EGFR-positive lung adenocarcinoma: A case report
    Hong, Er
    Chen, Xi-Er
    Mao, Jia
    Zhou, Jing-Jing
    Chen, Ling
    Xu, Jia-Yi
    Tao, Wei
    WORLD JOURNAL OF CLINICAL CASES, 2022, 10 (09) : 2836 - 2843
  • [34] Osimertinib in Combination with Bevacizumab Fails in Advanced Lung Adenocarcinoma Harboring EGFR T790M
    Zhang, Xiaoying
    GLOBAL MEDICAL GENETICS, 2021, 08 (04): : 133 - 134
  • [35] Sequential occurrence of T790M mutation and small cell lung cancer transformation in EGFR-positive lung adenocarcinoma: A case report
    Er Hong
    Xi-Er Chen
    Jia Mao
    Jing-Jing Zhou
    Ling Chen
    Jia-Yi Xu
    Wei Tao
    World Journal of Clinical Cases, 2022, (09) : 2836 - 2843
  • [36] Targeting the EGFR T790M mutation in non-small-cell lung cancer
    Normanno, Nicola
    Maiello, Monica Rosaria
    Chicchinelli, Nicoletta
    Iannaccone, Alessia
    Esposito, Claudia
    De Cecio, Rossella
    D'alessio, Amelia
    De Luca, Antonella
    EXPERT OPINION ON THERAPEUTIC TARGETS, 2017, 21 (02) : 159 - 165
  • [37] Germ-Line and Somatic Presentations of the EGFR T790M Mutation in Lung Cancer
    Prudkin, Ludmilla
    Tang, Ximing
    Wistuba, Ignacio I.
    JOURNAL OF THORACIC ONCOLOGY, 2009, 4 (01) : 139 - 141
  • [38] EGFR T790M resistance mutation in non small-cell lung carcinoma
    Denis, Marc G.
    Vallee, Audrey
    Theoleyre, Sandrine
    CLINICA CHIMICA ACTA, 2015, 444 : 81 - 85
  • [39] Clinical implication and usefulness of de novo EGFR T790M mutation in lung adenocarcinoma with EGFR-tyrosine kinase inhibitor sensitizing mutation
    Lee, Sang Hoon
    Kim, Eun Young
    Kim, Arum
    Chang, Yoon Soo
    CANCER BIOLOGY & THERAPY, 2020, 21 (08) : 741 - 748
  • [40] Combined bevacizumab and erlotinib treatment in patients with lung cancer with the T790M resistance mutation
    Mitsudomi, Tetsuya
    LANCET RESPIRATORY MEDICINE, 2017, 5 (05): : 369 - 370