FCKDNet: A Feature Condensation Knowledge Distillation Network for Semantic Segmentation

被引:2
|
作者
Yuan, Wenhao [1 ]
Lu, Xiaoyan [1 ]
Zhang, Rongfen [1 ]
Liu, Yuhong [1 ]
机构
[1] Guizhou Univ, Coll Big Data & Informat Engn, Guiyang 550025, Peoples R China
关键词
knowledge distillation; feature condensation; prediction information entropy; feature soft enhancement; semantic segmentation; IMAGES;
D O I
10.3390/e25010125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As a popular research subject in the field of computer vision, knowledge distillation (KD) is widely used in semantic segmentation (SS). However, based on the learning paradigm of the teacher-student model, the poor quality of teacher network feature knowledge still hinders the development of KD technology. In this paper, we investigate the output features of the teacher-student network and propose a feature condensation-based KD network (FCKDNet), which reduces pseudo-knowledge transfer in the teacher-student network. First, combined with the pixel information entropy calculation rule, we design a feature condensation method to separate the foreground feature knowledge from the background noise of the teacher network outputs. Then, the obtained feature condensation matrix is applied to the original outputs of the teacher and student networks to improve the feature representation capability. In addition, after performing feature condensation on the teacher network, we propose a soft enhancement method of features based on spatial and channel dimensions to improve the dependency of pixels in the feature maps. Finally, we divide the outputs of the teacher network into spatial condensation features and channel condensation features and perform distillation loss calculation with the student network separately to assist the student network to converge faster. Extensive experiments on the public datasets Pascal VOC and Cityscapes demonstrate that our proposed method improves the baseline by 3.16% and 2.98% in terms of mAcc, and 2.03% and 2.30% in terms of mIoU, respectively, and has better segmentation performance and robustness than the mainstream methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Point-to-Voxel Knowledge Distillation for LiDAR Semantic Segmentation
    Hou, Yuenan
    Zhu, Xinge
    Ma, Yuexin
    Loy, Chen Change
    Li, Yikang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8469 - 8478
  • [32] Knowledge Distillation for Efficient Panoptic Semantic Segmentation: applied to agriculture
    Li, Maohui
    Hasltead, Michael
    McCool, Chris
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 4204 - 4211
  • [33] Semantic Segmentation of Medical Images Based on Knowledge Distillation Algorithm
    Liu, Hanqing
    Li, Fang
    Yang, Jingyi
    Wang, Xiaotian
    Han, Junling
    Wei, Jin
    Kang, Xiaodong
    12TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, VOL 1, APCMBE 2023, 2024, 103 : 180 - 196
  • [34] Domain Adaptive Knowledge Distillation for Driving Scene Semantic Segmentation
    Kothandaraman, Divya
    Nambiar, Athira
    Mittal, Anurag
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2021), 2021, : 134 - 143
  • [35] Decomposed Knowledge Distillation for Class-Incremental Semantic Segmentation
    Baek, Donghyeon
    Oh, Youngmin
    Lee, Sanghoon
    Lee, Junghyup
    Ham, Bumsub
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [36] FIMKD: Feature-Implicit Mapping Knowledge Distillation for RGB-D Indoor Scene Semantic Segmentation
    Zhou, Wujie
    Xiao, Yuxiang
    Liu, Yuanyuan
    Jiang, Qiuping
    IEEE Transactions on Artificial Intelligence, 2024, 5 (12): : 6488 - 6499
  • [37] Knowledge Condensation Distillation
    Li, Chenxin
    Lin, Mingbao
    Ding, Zhiyuan
    Lin, Nie
    Zhuang, Yihong
    Huang, Yue
    Ding, Xinghao
    Cao, Liujuan
    COMPUTER VISION, ECCV 2022, PT XI, 2022, 13671 : 19 - 35
  • [38] Stacked and Distillation Network Framework for Point Cloud Semantic Segmentation
    Han, Jiawei
    Liu, Kaiqi
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 3052 - 3057
  • [39] Improving semantic segmentation with knowledge reasoning network?
    Chen, Shengjia
    Yang, Xiwei
    Li, Zhixin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 96
  • [40] A lightweight crack segmentation network based on knowledge distillation
    Wang, Wenjun
    Su, Chao
    Han, Guohui
    Zhang, Heng
    JOURNAL OF BUILDING ENGINEERING, 2023, 76