Combinatorial Estimations on Burnside Type Problems

被引:0
|
作者
Beletskiy, Anton [1 ]
Ivanov-Pogodaev, Ilya [2 ]
机构
[1] HSE Univ, Fac Math, Moscow 101000, Russia
[2] MIPT Univ, Sch Appl Math & Comp Sci, Moscow 141701, Russia
基金
俄罗斯科学基金会;
关键词
Burnside; small cancellations; group theory; ALGORITHM;
D O I
10.3390/math12050665
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Burnside problem, formulated by W. Burnside in 1902, is one of the most well-known and important open questions in the field of Group Theory. Despite significant progress made in the past century towards solving this problem, its complete solution remains unknown. In this paper, we investigate one of the approaches to solving the Burnside problem based on the application of an iterative theory of small cancellations and canonical forms developed by E. Rips in recent years. We present a novel self-contained exposition of this theory and utilize it to obtain new estimates on the infiniteness of initial approximations of Burnside groups where only a finite number of periodic relations is used for relatively small odd exponents (n>120).
引用
收藏
页数:25
相关论文
共 50 条
  • [31] ON COMBINATORIAL OPTIMIZATION PROBLEMS
    Sharifov, F. A.
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL. 1, 2020, : 377 - 379
  • [32] ON CERTAIN COMBINATORIAL PROBLEMS
    ROSENSTOCK, H
    MARADUDIN, AA
    AMERICAN JOURNAL OF PHYSICS, 1962, 30 (05) : 330 - &
  • [33] ON COMBINATORIAL TESTING PROBLEMS
    Addario-Berry, Louigi
    Broutin, Nicolas
    Devroye, Luc
    Lugosi, Gabor
    ANNALS OF STATISTICS, 2010, 38 (05): : 3063 - 3092
  • [34] COMBINATORIAL RECONSTRUCTION PROBLEMS
    ALON, N
    CARO, Y
    KRASIKOV, I
    RODITTY, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (02) : 153 - 161
  • [35] Hardness of learning problems over Burnside groups of exponent 3
    Nelly Fazio
    Kevin Iga
    Antonio R. Nicolosi
    Ludovic Perret
    William E. Skeith
    Designs, Codes and Cryptography, 2015, 75 : 59 - 70
  • [36] Hardness of learning problems over Burnside groups of exponent 3
    Fazio, Nelly
    Iga, Kevin
    Nicolosi, Antonio R.
    Perret, Ludovic
    Skeith, William E., III
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (01) : 59 - 70
  • [37] STABILITY ESTIMATIONS FOR FREE BOUNDARY PROBLEMS
    GAJEWSKI, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (08): : 439 - 447
  • [38] Statistical estimations in inverse scattering problems
    Burov, VA
    Kasatkina, EE
    Rumiantseva, OD
    ACOUSTICAL IMAGING, VOL 22, 1996, 22 : 113 - 118
  • [39] Statistical estimations in inverse scattering problems
    Burov, VA
    Kasatkina, EE
    Rumyantseva, OD
    ACOUSTICAL PHYSICS, 1997, 43 (03) : 270 - 276
  • [40] Statistical estimations in inverse scattering problems
    Burov, V.A.
    Kasatkina, E.E.
    Rumyantseva, O.D.
    1997, (43):