The ACMES Mission: Hyperspectral Earth Imaging in the LWIR and SWIR

被引:0
|
作者
Swenson, C. [1 ]
Anderson, L. [1 ,2 ]
Mattos, B. [1 ]
Lewis, B. [1 ]
Fish, C. [2 ]
Nunes, M. [3 ]
Wright, R. [3 ]
Shoeberl, M. [4 ]
机构
[1] Utah State Univ, 4170 Old Main Hill, Logan, UT 84322 USA
[2] Orion Space Solut, 282 Century Pl,1000, Louisville, CO 80027 USA
[3] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI USA
[4] Sci & Technol Corp, 10015 Old Columbia Rd,Suite E 250, Columbia, MD 21046 USA
关键词
Remote Sensing; Spectrometer; LWIR; SWIR; Hyperspectral; ionospheric; Active Thermal Control;
D O I
10.1117/12.2680358
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Active Cooling for Multispectral Earth Sensors (ACMES) is a 16U CubeSat technology demonstration mission funded by the NASA Earth Science Technology Office through the In-space Validation of Earth Science Technologies program. ACMES has two technology payloads for Earth IR imaging. The LWIR scientific instrument is the next generation Hyperspectral Thermal Imager (HyTI 2.0). HyTI-2.0 has 25 spectral bands between 8-12.5 mu m, and a ground sampling distance of 45 meters. The SWIR instrument is the Filter Incidence Narrow-band Infrared Spectrometer (FINIS) which is a compact and a lightweight instrument for measuring methane with a moderate spatial resolution (similar to 140 m) and wide field of view (similar to 10 degrees). FINIS can both measure the methane concentration dispersed over large regions and detect point source emissions by observing individual plumes. Key to the ACMES mission is a miniature pumped fluid loop technology developed for CubeSats, the Active Thermal Architecture for removing the waste heat from this similar to 120W spacecraft. ACMES is planned to launch in late 2024 to a similar to 550 km SSO orbit with a one-year technology demonstration followed by an extended mission to collect scientific data with HyTI 2.0 and FINIS. ACMES is a joint development effort between Utah State University, Orion Space Solutions, and the Hawaii Space Flight Laboratory.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Mineral Classification using Convolutional Neural Networks and SWIR Hyperspectral Imaging
    Cifuentes, Jose I.
    Arias, Luis E.
    Pirard, Eric
    Castillo, Fernando
    [J]. AI AND OPTICAL DATA SCIENCES V, 2024, 12903
  • [32] Sprayed or Soaked Concealed Drug Detection using SWIR Hyperspectral Imaging
    Wang, Jihang
    Krieger, Evan
    Zbur, Lucas
    Gilligan, Joanne
    Beideman, Rick
    Beckstead, Jeffrey
    Klueva, Oksana
    Conner, Maria
    Maney, Erica
    Treadoa, Patrick
    [J]. ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXVI, 2020, 11392
  • [33] CHIME: A COPERNICUS HYPERSPECTRAL IMAGING MISSION FOR THE ENVIRONMENT
    Gascon, Ferran
    Rast, Michael
    Celesti, Marco
    Bogaarts, Christelle
    Nieke, Jens
    [J]. Revue Francaise de Photogrammetrie et de Teledetection, 2022, 224 (01): : 5 - 8
  • [34] The Italian Precursor of an Operational Hyperspectral Imaging Mission
    Sacchetti, Andrea
    Cisbani, Andrea
    Babini, Gianni
    Galeazzi, Claudio
    [J]. SMALL SATELLITE MISSIONS FOR EARTH OBSERVATION: NEW DEVELOPMENTS AND TRENDS, 2010, : 73 - +
  • [35] Detection of disturbed earth using passive LWIR polarimetric imaging
    Gurton, Kristan P.
    Felton, Melvin
    [J]. POLARIZATION SCIENCE AND REMOTE SENSING IV, 2009, 7461
  • [36] Miniaturization of a SWIR Hyperspectral Imager
    Warren, Christopher P.
    Pfister, William
    Even, Detlev
    Velasco, Arleen
    Yee, Selwyn
    Breitwieser, David
    Naungayan, Joseph
    [J]. AIRBORNE INTELLIGENCE, SURVEILLANCE, RECONNAISSANCE (ISR) SYSTEMS AND APPLICATIONS VIII, 2011, 8020
  • [37] SWIR to LWIR HDVIP HgCdTe detector array performance
    D'Souza, A. I.
    Stapelbroek, M. G.
    Dawson, L.
    Ely, P.
    Yoneyama, C.
    Reekstin, J.
    Skokan, M. R.
    Kinch, M. A.
    Liao, P. K.
    Ohlson, M. J.
    Ronci, P. J.
    Teherani, T.
    Shih, H. D.
    Robinson, J.
    [J]. INFRARED TECHNOLOGY AND APPLICATIONS XXXII, PTS 1AND 2, 2006, 6206
  • [38] Active LWIR hyperspectral imaging and algorithms for rapid standoff trace chemical identification
    Breshike, Christopher J.
    Kendziora, Christopher A.
    Budack, Norman
    Yoon, Yohan
    Furstenberg, Robert
    Viet Nguyen
    McGill, R. Andrew
    [J]. ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXV, 2019, 10986
  • [39] Hyperspectral imaging using novel LWIR OPO for hazardous material detection and identification
    Ruxton, Keith
    Robertson, Gordon
    Miller, Bill
    Malcolm, Graeme P. A.
    Maker, Gareth T.
    [J]. CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XV, 2014, 9073
  • [40] Simulation of hyperspectral earth imaging data
    Nepobedimyi, S. P.
    Balter, B. M.
    Egorov, V. V.
    Kalinin, A. P.
    Rodionov, I. D.
    Rodionova, I. P.
    Stal'naya, M. V.
    [J]. DOKLADY PHYSICS, 2008, 53 (06) : 332 - 336