Controlling ammonia nitrogen is very important in intensive aquaculture. This study evaluated how different management strategies, i.e., chemoautotrophic (control), heterotrophic bacterial enhancement using carbon in glucose or polyhydroxy butyrate-hydroxy valerate (PHBV), and mature biofloc application, affect water quality and microbial community structure and composition. The management strategies were examined during the domestication and fish culture stages. In the domestication stage, the average NO2 -N concentration, pH, and DO in the glucose-added groups were significantly lower than those in the control and PHBV groups. All water quality parameters differed significantly among treatment groups in the culture stage. Carbon additions decreased both bacterial richness and diversity in the fish culture stage. Both principal coordinate analysis and hierarchical cluster analysis grouped the 33 bacteria community samples from the two stages into four clusters, which were closely related to management strategy. The dominant taxa of the clusters were identified using linear discriminant analysis effect size (LEfSe). The biomarkers of Cluster I included Marinomonas, Photobacterium, and Vibrio. Porticoccus and Clade-1a were identified as the biomarkers of Cluster II. Marivia, Leucothrix, and Phaeodactylibacter were identified as the biomarkers of Cluster IV. The Cluster I biomarkers were positively correlated with NO2 -N, while those of Cluster IV were positively correlated with NO3 -N. The redundancy analysis showed that the bacterial communities and biomarkers were influenced by water quality parameters. Quantitative real-time PCR analysis revealed significant differences in the abundances of the amoA and nxrB