Graph neural networks for the prediction of aircraft surface pressure distributions

被引:26
|
作者
Hines, Derrick [1 ]
Bekemeyer, Philipp [1 ]
机构
[1] DLR German Aerosp Ctr, Ctr Comp Applicat Aerosp Sci & Engn, Inst Aerodynam & Flow Technol, Lilienthalpl 7, D-38108 Braunschweig, Germany
关键词
Reduced -order model; Deep learning; Graph neural network; Multilayer perceptron; Proper orthogonal decomposition; Aerodynamics;
D O I
10.1016/j.ast.2023.108268
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Aircraft design requires a multitude of aerodynamic data and providing this solely based on high -quality methods such as computational fluid dynamics is prohibitive from a cost and time point of view. Deep learning methods have been proposed as surrogate models to predict aerodynamic quantities, showing great potential at significantly reduced cost. However, most approaches rely on a structured grid or are tested only for two-dimensional airfoil cases with a few thousand nodes. During aircraft programs, unstructured grids with millions of nodes are routinely used to model industrial-relevant complex physical systems. Hence, further investigation is required to study the applicability and extension of deep learning methods to industrial cases. In this paper, we use a graph neural network approach applicable to unstructured grids and extend it for the task of predicting surface pressure distributions for complex cases involving several hundreds of thousand of nodes. We compare this approach with proper orthogonal decomposition combined with an interpolation technique and with two other deep learning approaches, namely, a coordinate-based multilayer perceptron for pointwise predictions and its extension using surface normals as additional inputs. Results are first presented for a two-dimensional airfoil case and then for the NASA Common Research Model transport aircraft with an underlying mesh consisting of around 500, 000 surface points. The deep learning methods demonstrate in transonic flows the ability to capture shock location and strength more accurately. Furthermore, the proposed graph-based approach with the addition of more geometric information such as connectivity and surface normals seems to provide an additional boost in performance over the coordinate-based multilayer perceptron yielding more realistic pressure distributions. (c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Product Demand Prediction with Spatial Graph Neural Networks
    Li, Jiale
    Fan, Li
    Wang, Xuran
    Sun, Tiejiang
    Zhou, Mengjie
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [22] Line graph neural networks for link weight prediction
    Liang, Jinbi
    Pu, Cunlai
    Shu, Xiangbo
    Xia, Yongxiang
    Xia, Chengyi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 661
  • [23] Unsupervised pedestrian trajectory prediction with graph neural networks
    Wang, Mingkun
    Shi, Dianxi
    Guan, Naiyang
    Zhang, Tao
    Wang, Liujing
    Li, Ruoxiang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 832 - 839
  • [24] Bitter peptide prediction using graph neural networks
    Srivastava, Prashant
    Steuer, Alexandra
    Ferri, Francesco
    Nicoli, Alessandro
    Schultz, Kristian
    Bej, Saptarshi
    Di Pizio, Antonella
    Wolkenhauer, Olaf
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01):
  • [25] Temporal Bipartite Graph Neural Networks for Bond Prediction
    Zhou, Dan
    Uddin, Ajim
    Shang, Zuofeng
    Tao, Xinyuan
    Yu, Dantong
    3RD ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2022, 2022, : 308 - 316
  • [26] Manufacturing service capability prediction with Graph Neural Networks
    Li, Yunqing
    Liu, Xiaorui
    Starly, Binil
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 74 : 291 - 301
  • [27] Information Diffusion Prediction with Personalized Graph Neural Networks
    Wu, Yao
    Huang, Hong
    Jin, Hai
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2020), PT II, 2020, 12275 : 376 - 387
  • [28] Evaluating Link Prediction Explanations for Graph Neural Networks
    Borile, Claudio
    Perotti, Alan
    Panisson, Andre
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II, 2023, 1902 : 382 - 401
  • [29] Transfer Learning in Traffic Prediction with Graph Neural Networks
    Huang, Yunjie
    Song, Xiaozhuang
    Zhang, Shiyao
    Yu, James J. Q.
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3732 - 3737
  • [30] Temporal Multiresolution Graph Neural Networks For Epidemic Prediction
    Truong Son Hy
    Viet Bach Nguyen
    Long Tran-Thanh
    Kondor, Risi
    WORKSHOP ON HEALTHCARE AI AND COVID-19, VOL 184, 2022, 184 : 21 - 32