Prototype-Guided Feature Learning for Unsupervised Domain Adaptation

被引:20
|
作者
Du, Yongjie [1 ]
Zhou, Deyun [1 ]
Xie, Yu [2 ]
Lei, Yu [1 ]
Shi, Jiao [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Shaanxi, Peoples R China
[2] Shanxi Univ, Key Lab Computat Intelligence & Chinese Informat P, Minist Educ, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised domain adaptation; Class prototype; Pseudo labeling; Label filtering;
D O I
10.1016/j.patcog.2022.109154
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised Domain Adaptation transfers knowledge from the source domain to the target domain. It makes remarkable progress in alleviating the label-shortage problem in machine learning. Existing meth-ods focus on aligning the two domain distributions directly. However, due to domain discrepancy, there may be some samples in the source domain being unnecessary or even harmful to the target tasks. Avoid-ing transferring knowledge from these samples is crucial. Existing researches are limited in this area. To this end, we propose a new unsupervised domain adaptation approach named the prototype-guided fea-ture learning. The proposed method contains three main innovations. Firstly, we propose to utilize the more representative source-domain samples, class prototypes, to learn a domain-invariant subspace with the target samples. Secondly, the modified nearest class prototype method is proposed to predict the target samples by exploiting the structural information of the target domain efficiently. Thirdly, a multi-stage label filtering method is proposed to alleviate the mislabeling problem during training. Extensive experiments manifest that our method is competitive compared to the current mainstream unsupervised domain adaptive methods.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Unsupervised Domain Adaptation via Weighted Sequential Discriminative Feature Learning for Sentiment Analysis
    Badr, Haidi
    Wanas, Nayer
    Fayek, Magda
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [42] Exploiting Local Feature Patterns for Unsupervised Domain Adaptation
    Wen, Jun
    Liu, Risheng
    Zheng, Nenggan
    Zheng, Qian
    Gong, Zhefeng
    Yuan, Junsong
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5401 - 5408
  • [43] Joint category-level and discriminative feature learning networks for unsupervised domain adaptation
    Zhang, Pengyu
    Huang, Junchu
    Zhou, Zhiheng
    Chen, Zengqun
    Shang, Junyuan
    Yang, Zhiwei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (06) : 8499 - 8510
  • [44] Discriminative Feature Mining and Alignment for Unsupervised Domain Adaptation
    Xiang, Jing
    Cao, Guitao
    Zhang, Xinyue
    Zhang, Hanxiu
    Wu, Chunwei
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [45] Bidirectional feature enhancement transformer for unsupervised domain adaptation
    Hao, Zhiwei
    Wang, Shengsheng
    Long, Sifan
    Li, Yiyang
    Chai, Hao
    VISUAL COMPUTER, 2024, 40 (09): : 6261 - 6277
  • [46] TRANSFERABLE DISCRIMINATIVE FEATURE MINING FOR UNSUPERVISED DOMAIN ADAPTATION
    Zhao, Lingjun
    Deng, Wanxia
    Kuang, Gangyao
    Hu, Dewen
    Liu, Li
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1259 - 1263
  • [47] Attention-guided adaptation factors for unsupervised facial domain adaptation
    Hong, Sungeun
    Ryu, Jongbin
    ELECTRONICS LETTERS, 2020, 56 (16) : 816 - +
  • [49] Stable Prototype-Guided Single-Temporal Supervised Learning for Change Detection and Extraction of Building
    Hou, Shasha
    Zhang, Guo
    Cui, Hao
    Li, Xue
    Chen, Yujia
    Li, Haifeng
    Wang, Huabin
    Ma, Xiaolong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [50] Prototype-guided bi-level adversarial domain adaptation network for intelligent fault diagnosis of rotating machinery under various working conditions
    Kuang, Jiachen
    Xu, Guanghua
    Zhang, Sicong
    Han, Chengcheng
    Wu, Qingqiang
    Wei, Fan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)