Collective privacy recovery: Data-sharing coordination via decentralized artificial intelligence

被引:0
|
作者
Pournaras, Evangelos [1 ]
Ballandies, Mark Christopher [2 ]
Bennati, Stefano [2 ]
Chen, Chien-fei [3 ]
机构
[1] Univ Leeds, Sch Biol, Leeds LS2 3JT, England
[2] Swiss Fed Inst Technol, Computat Social Sci, CH-8092 Zurich, Switzerland
[3] Univ Tennessee, Inst Secure & Sustainable Environm, Knoxville, TN 37996 USA
来源
PNAS NEXUS | 2024年 / 3卷 / 02期
基金
欧洲研究理事会; 瑞士国家科学基金会; 美国国家科学基金会;
关键词
INFORMATION; INTERNET; BEHAVIOR; SECURE; THINGS; USERS; AGE;
D O I
10.1093/pnasnexus/pgae029
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Collective privacy loss becomes a colossal problem, an emergency for personal freedoms and democracy. But, are we prepared to handle personal data as scarce resource and collectively share data under the doctrine: as little as possible, as much as necessary? We hypothesize a significant privacy recovery if a population of individuals, the data collective, coordinates to share minimum data for running online services with the required quality. Here, we show how to automate and scale-up complex collective arrangements for privacy recovery using decentralized artificial intelligence. For this, we compare for the first time attitudinal, intrinsic, rewarded, and coordinated data sharing in a rigorous living-lab experiment of high realism involving >27,000 real data disclosures. Using causal inference and cluster analysis, we differentiate criteria predicting privacy and five key data-sharing behaviors. Strikingly, data-sharing coordination proves to be a win-win for all: remarkable privacy recovery for people with evident costs reduction for service providers.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] People-centric collective intelligence: decentralized and enhanced privacy mobile crowd sensing based on blockchain
    Arulprakash, M.
    Jebakumar, R.
    [J]. JOURNAL OF SUPERCOMPUTING, 2021, 77 (11): : 12582 - 12608
  • [42] Re-identification of individuals in genomic data-sharing beacons via allele inference
    von Thenen, Nora
    Ayday, Erman
    Cicek, A. Ercument
    [J]. BIOINFORMATICS, 2019, 35 (03) : 365 - 371
  • [43] Global cross-company data-sharing on the use of recovery animals for human safety assessment
    Sewell, Fiona
    Chapman, Kathryn
    [J]. TOXICOLOGY LETTERS, 2014, 229 : S113 - S114
  • [44] DISOC: A Trustworthy Decentralized Oracle Architecture With Strong Privacy Preservation for IIoT Data Sharing
    Xiong, Chenxi
    Yang, Ting
    Wang, Xiangyu
    Cao, Yunwei
    Mao, Gang
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 18676 - 18685
  • [45] Sunspot: A Decentralized Framework Enabling Privacy for Authorizable Data Sharing on Transparent Public Blockchains
    Ding, Yepeng
    Sato, Hiroyuki
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT I, 2022, 13155 : 693 - 709
  • [46] Towards Privacy-Preserving Sharing of Cyber Threat Intelligence for Effective Response and Recovery
    Nitz, Lasse
    Gurabi, Mehdi Akbari
    Mandal, Avikarsha
    Heitmann, Benjamin
    [J]. ERCIM NEWS, 2021, (126): : 33 - 34
  • [47] Privacy-preserving data sharing via probabilistic modeling
    Jalko, Joonas
    Lagerspetz, Eemil
    Haukka, Jari
    Tarkoma, Sasu
    Honkela, Antti
    Kaski, Samuel
    [J]. PATTERNS, 2021, 2 (07):
  • [48] Enhancing privacy in cyber-physical systems: An efficient blockchain-assisted data-sharing scheme with deniability
    Xu, Yang
    Peng, Ziyu
    Zhang, Cheng
    Wang, Gaocai
    Wang, Huiling
    Jiang, Hongbo
    Zhang, Yaoxue
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 150
  • [49] A Secure Data-Sharing Scheme for Privacy-Preserving Supporting Node-Edge-Cloud Collaborative Computation
    Zheng, Kaifa
    Ding, Caiyang
    Wang, Jinchen
    [J]. ELECTRONICS, 2023, 12 (12)
  • [50] Privacy Preserving Data-Sharing Scheme in Content-Centric Networks Against Collusion Name Guessing Attacks
    Zhao, Xingwen
    Li, Hui
    [J]. IEEE ACCESS, 2017, 5 : 23182 - 23189