Local Predecoder to Reduce the Bandwidth and Latency of Quantum Error Correction

被引:11
|
作者
Smith, Samuel C. [1 ]
Brown, Benjamin J. [1 ]
Bartlett, Stephen D. [1 ]
机构
[1] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
DECODERS;
D O I
10.1103/PhysRevApplied.19.034050
中图分类号
O59 [应用物理学];
学科分类号
摘要
A fault-tolerant quantum computer will be supported by a classical decoding system interfacing withquantum hardware to perform quantum error correction. It is important that the decoder can keep pacewith the quantum clock speed, within the limitations on communication that are imposed by the physicalarchitecture. To this end, we propose a local "predecoder," which makes greedy corrections to reducethe amount of syndrome data sent to a standard matching decoder. We study these classical overheadsfor the surface code under a phenomenological phase-flip noise model with imperfect measurements. Wefind substantial improvements in the run time of the global decoder and the communication bandwidth byusing the predecoder. For instance, to achieve a logical-failure probability off=10-15using qubits withphysical error ratep=10-3and a distanced=22 code, we find that the bandwidth cost is reduced by afactor of 1000 and that the time taken by a matching decoder is sped up by a factor of 200. To achieve thistarget failure probability, the predecoding approach requires a 50% increase in the qubit count compared with the optimal decoder
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Method to Reduce Resources for Quantum Error Correction
    Majumdar, Ritajit
    Basu, Saikat
    Sur-Kolay, Susmita
    REVERSIBLE COMPUTATION, RC 2017, 2017, 10301 : 151 - 161
  • [2] Quantum correlations, local interactions and error correction
    Vedral, V
    Rippin, MA
    Plenio, MB
    JOURNAL OF MODERN OPTICS, 1997, 44 (11-12) : 2185 - 2205
  • [3] Serialized quantum error correction protocol for high-bandwidth quantum repeaters
    Glaudell, A. N.
    Waks, E.
    Taylor, J. M.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [4] Decoding Quantum Error Correction Codes With Local Variation
    Hanks M.
    Munro W.J.
    Nemoto K.
    IEEE Transactions on Quantum Engineering, 2020, 1
  • [5] Continuous quantum error correction through local operations
    Mascarenhas, Eduardo
    Marques, Breno
    Cunha, Marcelo Terra
    Santos, Marcelo Franca
    PHYSICAL REVIEW A, 2010, 82 (03)
  • [6] CooECC: A Cooperative Error Correction Scheme to Reduce LDPC Decoding Latency in NAND Flash
    Zhang, Meng
    Wu, Fei
    Du, Yajuan
    Yang, Chengmo
    Xie, Changsheng
    Wan, Jiguang
    2017 IEEE 35TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD), 2017, : 657 - 664
  • [7] Quantum interleaver: Quantum error correction for burst error
    Kawabata, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (11) : 3540 - 3543
  • [8] Fingerprinting: Bounding soft-error-detection latency and bandwidth
    Smolens, JC
    Gold, BT
    Kim, JW
    Falsafi, B
    Hoe, JC
    Nowatzyk, AG
    IEEE MICRO, 2004, 24 (06) : 22 - 29
  • [9] Fingerprinting: Bounding soft-error detection latency and bandwidth
    Smolens, JC
    Gold, BT
    Kim, J
    Falsafi, B
    Hoe, JC
    Nowatzyk, AG
    ACM SIGPLAN NOTICES, 2004, 39 (11) : 224 - 234
  • [10] Quantum Error Correction with Quantum Autoencoders
    Locher, David F.
    Cardarelli, Lorenzo
    Mueller, Markus
    QUANTUM, 2023, 7