A generalized Halpern-type forward-backward splitting algorithm for solving variational inclusion problems

被引:5
|
作者
Dechboon, Premyuda [1 ]
Adamu, Abubakar [2 ,3 ,4 ]
Kumam, Poom [2 ,5 ,6 ]
机构
[1] Burapha Univ, Fac Educ, Dept Learning Management, Math, Chonburi Campus,169 Long Haad Bangsaen Rd, Mueang 20131, Chonburi, Thailand
[2] King Mongkuts Univ Technol Thonburi, Ctr Excellence Theoret & Computat Sci, SCL Fixed Point Lab 802, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] African Univ Sci & Technol, Math Inst, Abuja 900107, Nigeria
[4] Near East Univ, Operat Res Ctr Healthcare, Nicosia, Trnc, Turkiye
[5] King Mongkuts Univ Technol Thonburi, KMUTTFixed Point Res Lab, KMUTT Fixed Point Theory & Applicat Res Grp, Dept Math,Fac Sci, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 05期
关键词
accretive operator; convergence; generalized duality mapping; relaxation parameter; splitting method; STRONG-CONVERGENCE THEOREMS; INERTIAL PROXIMAL METHOD; REAL BANACH-SPACES; ACCRETIVE-OPERATORS; MONOTONE-OPERATORS; MAPPINGS;
D O I
10.3934/math.2023559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the problem of finding a zero of sum of two accretive operators in the setting of uniformly convex and q-uniformly smooth real Banach spaces (q > 1). We incorporate the inertial and relaxation parameters in a Halpern-type forward-backward splitting algorithm to accelerate the convergence of its sequence to a zero of sum of two accretive operators. Furthermore, we prove strong convergence of the sequence generated by our proposed iterative algorithm. Finally, we provide a numerical example in the setting of the classical Banach space l4(R) to study the effect of the relaxation and inertial parameters in our proposed algorithm.
引用
收藏
页码:11037 / 11056
页数:20
相关论文
共 50 条
  • [21] The viscosity approximation forward-backward splitting method for solving quasi inclusion problems in Banach spaces
    Zhao, Fu Hai
    Yang, Li
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01): : 130 - 140
  • [22] Explicit Halpern-type iterative algorithm for solving equilibrium problems with applications
    Muangchoo, Kanikar
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 25 (02): : 115 - 132
  • [23] On Halpern-type sequences with applications in variational inequality problems
    Jaipranop, Ch
    Saejung, S.
    [J]. OPTIMIZATION, 2022, 71 (03) : 675 - 710
  • [24] Forward-Backward Splitting Method for Solving a System of Quasi-Variational Inclusions
    Chang, Shih-Sen
    Wen, Ching-Feng
    Yao, Jen-Chih
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2169 - 2189
  • [25] WEAK AND STRONG CONVERGENCE RESULTS OF FORWARD-BACKWARD SPLITTING METHODS FOR SOLVING INCLUSION PROBLEMS IN BANACH SPACES
    Luo, Yinglin
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (02) : 341 - 353
  • [26] A STRONG CONVERGENCE HALPERN-TYPE INERTIAL ALGORITHM FOR SOLVING SYSTEM OF SPLIT VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS
    Mebawondu, A. A.
    Jolaoso, L. O.
    Abass, H. A.
    Oyewole, O. K.
    Aremu, K. O.
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06): : 2762 - 2791
  • [27] Generalized forward–backward splitting with penalization for monotone inclusion problems
    Nimit Nimana
    Narin Petrot
    [J]. Journal of Global Optimization, 2019, 73 : 825 - 847
  • [28] A new modified forward–backward–forward algorithm for solving inclusion problems
    Duong Viet Thong
    Prasit Cholamjiak
    Nattawut Pholasa
    Vu Tien Dung
    Luong Van Long
    [J]. Computational and Applied Mathematics, 2022, 41
  • [29] A new modified forward–backward–forward algorithm for solving inclusion problems
    Thong, Duong Viet
    Cholamjiak, Prasit
    Pholasa, Nattawut
    Dung, Vu Tien
    Long, Luong Van
    [J]. Computational and Applied Mathematics, 2022, 41 (08)
  • [30] The forward-backward splitting methods for variational inequalities and minimization problems in Banach spaces
    Guan, Wei-Bo
    Song, Wen
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)