A generalized Halpern-type forward-backward splitting algorithm for solving variational inclusion problems

被引:5
|
作者
Dechboon, Premyuda [1 ]
Adamu, Abubakar [2 ,3 ,4 ]
Kumam, Poom [2 ,5 ,6 ]
机构
[1] Burapha Univ, Fac Educ, Dept Learning Management, Math, Chonburi Campus,169 Long Haad Bangsaen Rd, Mueang 20131, Chonburi, Thailand
[2] King Mongkuts Univ Technol Thonburi, Ctr Excellence Theoret & Computat Sci, SCL Fixed Point Lab 802, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] African Univ Sci & Technol, Math Inst, Abuja 900107, Nigeria
[4] Near East Univ, Operat Res Ctr Healthcare, Nicosia, Trnc, Turkiye
[5] King Mongkuts Univ Technol Thonburi, KMUTTFixed Point Res Lab, KMUTT Fixed Point Theory & Applicat Res Grp, Dept Math,Fac Sci, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 05期
关键词
accretive operator; convergence; generalized duality mapping; relaxation parameter; splitting method; STRONG-CONVERGENCE THEOREMS; INERTIAL PROXIMAL METHOD; REAL BANACH-SPACES; ACCRETIVE-OPERATORS; MONOTONE-OPERATORS; MAPPINGS;
D O I
10.3934/math.2023559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the problem of finding a zero of sum of two accretive operators in the setting of uniformly convex and q-uniformly smooth real Banach spaces (q > 1). We incorporate the inertial and relaxation parameters in a Halpern-type forward-backward splitting algorithm to accelerate the convergence of its sequence to a zero of sum of two accretive operators. Furthermore, we prove strong convergence of the sequence generated by our proposed iterative algorithm. Finally, we provide a numerical example in the setting of the classical Banach space l4(R) to study the effect of the relaxation and inertial parameters in our proposed algorithm.
引用
收藏
页码:11037 / 11056
页数:20
相关论文
共 50 条
  • [1] Generalized Halpern-type forward-backward splitting methods for convex minimization problems with application to image restoration problems
    Kitkuan, Duangkamon
    Kumam, Poom
    Martinez-Moreno, Juan
    [J]. OPTIMIZATION, 2020, 69 (7-8) : 1557 - 1581
  • [2] TWO-STEP INERTIAL HALPERN-TYPE FORWARD-BACKWARD SPLITTING ALGORITHM FOR MONOTONE INCLUSIONS PROBLEMS IN HILBERT SPACES
    Rao, Y.
    Wang, T.
    Lv, P.
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (02) : 419 - 428
  • [3] Parallel inertial forward-backward splitting methods for solving variational inequality problems with variational inclusion constraints
    Thang, Tran Van
    Tien, Ha Manh
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [4] A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces
    Prasit Cholamjiak
    [J]. Numerical Algorithms, 2016, 71 : 915 - 932
  • [6] An inertial Mann forward-backward splitting algorithm of variational inclusion problems and its applications
    Peeyada, Pronpat
    Suparatulatorn, Raweerote
    Cholamjiak, Watcharaporn
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 158
  • [7] Generalized forward-backward splitting with penalization for monotone inclusion problems
    Nimana, Nimit
    Petrot, Narin
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (04) : 825 - 847
  • [8] An Inertial Forward-Backward Splitting Method for Solving Modified Variational Inclusion Problems and Its Application
    Sombut, Kamonrat
    Sitthithakerngkiet, Kanokwan
    Arunchai, Areerat
    Seangwattana, Thidaporn
    [J]. MATHEMATICS, 2023, 11 (09)
  • [9] AN ACCELERATED FORWARD-BACKWARD SPLITTING ALGORITHM FOR SOLVING INCLUSION PROBLEMS WITH APPLICATIONS TO REGRESSION AND LINK PREDICTION PROBLEMS
    Dixit, A.
    Sahu, D. R.
    Gautam, P.
    Som, T.
    Yao, J. C.
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (01): : 79 - 101
  • [10] An inertial forward-backward splitting method for solving combination of equilibrium problems and inclusion problems
    Khan, Suhel Ahmad
    Cholamjiak, Watcharaporn
    Kazmi, K. R.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 6283 - 6307