Change-Point Detection and Regularization in Time Series Cross-Sectional Data Analysis

被引:1
|
作者
Park, Jong Hee [1 ]
Yamauchi, Soichiro [2 ]
机构
[1] Seoul Natl Univ, IR Data Ctr, Dept Polit Sci & Int Relat, Seoul, South Korea
[2] Harvard Univ, Dept Govt, Cambridge, MA 02138 USA
关键词
Bayesian inference; change-point detection; regularization; shrinkage; high-dimensional data; HIGH-DIMENSIONAL REGRESSION; GOVERNMENT PARTISANSHIP; LABOR ORGANIZATION; VARIABLE SELECTION; TRADE; POLICY; HETEROGENEITY; BRIDGE; LASSO; LIKELIHOOD;
D O I
10.1017/pan.2022.23
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
Researchers of time series cross-sectional data regularly face the change-point problem, which requires them to discern between significant parametric shifts that can be deemed structural changes and minor parametric shifts that must be considered noise. In this paper, we develop a general Bayesian method for change-point detection in high-dimensional data and present its application in the context of the fixed-effect model. Our proposed method, hidden Markov Bayesian bridge model, jointly estimates high-dimensional regime-specific parameters and hidden regime transitions in a unified way. We apply our method to Alvarez, Garrett, and Lange's (1991, American Political Science Review 85, 539-556) study of the relationship between government partisanship and economic growth and Allee and Scalera's (2012, International Organization 66, 243-276) study of membership effects in international organizations. In both applications, we found that the proposed method successfully identify substantively meaningful temporal heterogeneity in parameters of regression models.
引用
收藏
页码:257 / 277
页数:21
相关论文
共 50 条
  • [31] Automated Change-Point Detection of EEG Signals Based on Structural Time-Series Analysis
    Chen, Guangyuan
    Lu, Guoliang
    Shang, Wei
    Xie, Zhaohong
    IEEE ACCESS, 2019, 7 : 180168 - 180180
  • [32] Collaborated Online Change-point Detection in Sparse Time Series for Online Advertising
    Zhang, Jie
    Wei, Zhi
    Yan, Zhenyu
    Pani, Abhishek
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 1099 - 1104
  • [33] A SELF-NORMALIZED APPROACH TO SEQUENTIAL CHANGE-POINT DETECTION FOR TIME SERIES
    Chan, Ngai Hang
    Ng, Wai Leong
    Yau, Chun Yip
    STATISTICA SINICA, 2021, 31 (01) : 491 - 517
  • [34] RANK-BASED MULTIPLE CHANGE-POINT DETECTION IN MULTIVARIATE TIME SERIES
    Harle, F.
    Chatelain, F.
    Gouy-Pailler, C.
    Achard, S.
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1337 - 1341
  • [35] Nonparametric Decomposition of Quasi-periodic Time Series for Change-point Detection
    Artemov, Alexey
    Burnaev, Evgeny
    Lokot, Andrey
    EIGHTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2015), 2015, 9875
  • [36] Page's sequential procedure for change-point detection in time series regression
    Fremdt, Stefan
    STATISTICS, 2015, 49 (01) : 128 - 155
  • [37] Epidemic change-point detection in general integer-valued time series
    Diop, Mamadou Lamine
    Kengne, William
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (06) : 1131 - 1150
  • [38] Online Change-Point Detection in Sparse Time Series With Application to Online Advertising
    Zhang, Jie
    Wei, Zhi
    Yan, Zhenyu
    Zhou, MengChu
    Pani, Abhishek
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (06): : 1141 - 1151
  • [39] SEQUENTIAL CHANGE-POINT DETECTION IN TIME SERIES MODELS BASED ON PAIRWISE LIKELIHOOD
    Leung, Sze Him
    Ng, Wai Leong
    Yau, Chun Yip
    STATISTICA SINICA, 2017, 27 (02) : 575 - 605
  • [40] Online common change-point detection in a set of nonstationary categorical time series
    Leyli-Abadi, Milad
    Same, Allou
    Oukhellou, Latifa
    Cheifetz, Nicolas
    Mandel, Pierre
    Feliers, Cedric
    Heim, Veronique
    NEUROCOMPUTING, 2021, 439 : 176 - 196