Insight into pulse-charging for lithium plating-free fast-charging lithium-ion batteries

被引:8
|
作者
Jeong, Yeon Tae [1 ,2 ]
Shin, Hong Rim [3 ]
Lee, Jinhong [1 ]
Ryu, Myung-Hyun [1 ]
Choi, Sinho [4 ]
Kim, Hansung [2 ]
Jung, Kyu-Nam [1 ]
Lee, Jong-Won [5 ]
机构
[1] Korea Inst Energy Res KIER, Renewable Energy Inst, 152 Gajeong Ro, Daejeon 34129, South Korea
[2] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[3] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Energy Sci & Engn, 333 Techno Jungang Daero, Daegu 42988, South Korea
[4] Korea Inst Energy Res KIER, Ulsan Adv Energy Technol R&D Ctr, 25 Techno saneop Ro 55beon Gil, Ulsan 44776, South Korea
[5] Hanyang Univ, Div Mat Sci & Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
关键词
Lithium -ion battery; Fast; -charging; Lithium plating; Pulse; Charging protocol; COULOMBIC EFFICIENCY; CYCLE LIFE; DEPOSITION; ELECTRODE; BEHAVIOR;
D O I
10.1016/j.electacta.2023.142761
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In recent years, tremendous efforts have been devoted to searching for the fast-charging methodology of lithiumion battery (LIB) with widespread practical application of the electric vehicles, since the uncontrolled Li plating on the graphite anode under the fast-charging condition can lead the accelerated capacity decay and cause the safety issues of LIB. Here, we present mechanistic insights into the pulse-current-based fast-charging to aid with suppressing Li plating on the graphite anode. Compared with a conventional fast-charging protocol of the constant current method, the full-cell assembled with graphite anode and LiNi0.6Co0.2Mn0.2O2 cathode exhibits the improved fast-charging capability and cycle performance under the pulse-charging protocol. In particular, the graphite anode after prolonged 300 cycles shows a clean surface free of plated Li, which confirms that the pulse-charging protocol effectively inhibits Li plating on the anode even under fast-charging conditions. Furthermore, the physics-based numerical modeling results demonstrate that the pulse-current redistributes the accumulated Li+ species at the electrolyte/anode interface periodically, which mitigates the anode potential drop and prevents consequent Li plating.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Suting Weng
    Gaojing Yang
    Simeng Zhang
    Xiaozhi Liu
    Xiao Zhang
    Zepeng Liu
    Mengyan Cao
    Mehmet Nurullah Ate?
    Yejing Li
    Liquan Chen
    Zhaoxiang Wang
    Xuefeng Wang
    Nano-Micro Letters, 2023, 15 (11) : 526 - 537
  • [22] Analysis of Graphite Materials for Fast-Charging Capabilities in Lithium-Ion Batteries
    Kirner, J.
    Zhang, L.
    Qin, Y.
    Su, X.
    Li, Y.
    Lu, W.
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 33 - 44
  • [23] Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries
    Ding, Xiaobo
    Huang, Qianhui
    Xiong, Xunhui
    ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (11)
  • [24] The fast-charging properties of micro lithium-ion batteries for smart devices
    Gao, Xianggang
    Zhou, Hao
    Li, Shihao
    Chang, ShiLei
    Lai, Yanqing
    Zhang, Zhian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 615 : 141 - 150
  • [25] Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries
    Paul, Partha P.
    Thampy, Vivek
    Cao, Chuntian
    Steinruck, Hans-Georg
    Tanim, Tanvir R.
    Dunlop, Alison R.
    Dufek, Eric J.
    Trask, Stephen E.
    Jansen, Andrew N.
    Toney, Michael F.
    Nelson Weker, Johanna
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (09) : 4979 - 4988
  • [26] Highly safe lithium vanadium oxide anode for fast-charging dendrite-free lithium-ion batteries
    Zhang, Hao
    Lin, Wenhui
    Kang, Le
    Zhang, Yi
    Zhou, Yunlei
    Jiang, Shan
    NANOTECHNOLOGY REVIEWS, 2024, 13 (01)
  • [27] Lithium-plating-free fast charging of large-format lithium-ion batteries with reference electrodes
    Liu, Jinhai
    Chu, Zhengyu
    Li, Haili
    Ren, Dongsheng
    Zheng, Yuejiu
    Lu, Languang
    Han, Xuebing
    Ouyang, Minggao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (05) : 7918 - 7932
  • [28] Onboard early detection and mitigation of lithium plating in fast-charging batteries
    Huang, Wenxiao
    Ye, Yusheng
    Chen, Hao
    Vila, Rafael A.
    Xiang, Andrew
    Wang, Hongxia
    Liu, Fang
    Yu, Zhiao
    Xu, Jinwei
    Zhang, Zewen
    Xu, Rong
    Wu, Yecun
    Chou, Lien-Yang
    Wang, Hansen
    Xu, Junwei
    Boyle, David Tomas
    Li, Yuzhang
    Cui, Yi
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [29] Effect of Anode Porosity and Temperature on the Performance and Lithium Plating During Fast-Charging of Lithium-Ion Cells
    Robertson, David C.
    Flores, LeRoy
    Dunlop, Alison R.
    Trask, Stephen E.
    Usseglio-Viretta, Francois L. E.
    Colclasure, Andrew M.
    Yang, Zhenzhen
    Bloom, Ira
    ENERGY TECHNOLOGY, 2021, 9 (01)
  • [30] Conductive TiN network-assisted fast-charging of lithium-ion batteries
    Jeong, Won Ung
    Shin, Hong Rim
    Choi, Ilyoung
    Jeong, Jae Seok
    Suh, Joo Hyeong
    Kim, Dong Ki
    Kim, Youngugk
    Lee, Jong-Won
    Park, Min-Sik
    Journal of Materials Chemistry A, 2024, 13 (03) : 2084 - 2092