Search Result Diversification Using Query Aspects as Bottlenecks

被引:0
|
作者
Yu, Puxuan [1 ]
Rahimi, Razieh [1 ]
Huang, Zhiqi [1 ]
Allan, James [1 ]
机构
[1] Univ Massachusetts Amherst, Amherst, MA 01002 USA
关键词
Search result diversification; Query aspects; Joint ranking and explanation;
D O I
10.1145/3583780.3615050
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address some of the limitations of coverage-based search result diversification models, which often consist of separate components and rely on external systems for query aspects. To overcome these challenges, we introduce an end-to-end learning framework called DUB. Our approach preserves the intrinsic interpretability of coverage-based methods while enhancing diversification performance. Drawing inspiration from the information bottleneck method, we propose an aspect extractor that generates query aspect embeddings optimized as information bottlenecks for the task of diversified document re-ranking. Experimental results demonstrate that DUB outperforms state-of-the-art diversification models.
引用
收藏
页码:3040 / 3051
页数:12
相关论文
共 50 条
  • [21] Search Result Diversification in Flickr
    Negi, Sumit
    Jaju, Abhimanyu
    Chaudhury, Santanu
    2016 8TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMSNETS), 2016,
  • [22] Result diversification for tweet search
    Ozsoy, Makbule Gulcin
    Onal, Kezban Dilek
    Altingovde, Ismail Sengor
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8787 : 78 - 89
  • [23] A Survey on Search Result Diversification
    Dou Z.-C.
    Qin X.-B.
    Wen J.-R.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (12): : 2591 - 2613
  • [24] Result Diversification for Tweet Search
    Ozsoy, Makbule Gulcin
    Onal, Kezban Dilek
    Altingovde, Ismail Sengor
    WEB INFORMATION SYSTEMS ENGINEERING, PT II, 2014, 8787 : 78 - 89
  • [25] Knowledge Enhanced Search Result Diversification
    Su, Zhan
    Dou, Zhicheng
    Zhu, Yutao
    Wen, Ji-Rong
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 1687 - 1695
  • [26] A learnable search result diversification method
    Zheng, Hai-Tao
    Han, Jinxin
    Wang, Zhuren
    Xiao, Xi
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 108 : 74 - 80
  • [27] On the role of novelty for search result diversification
    Santos, Rodrygo L. T.
    Macdonald, Craig
    Ounis, Iadh
    INFORMATION RETRIEVAL, 2012, 15 (05): : 478 - 502
  • [28] Term Level Search Result Diversification
    Dang, Van
    Croft, W. Bruce
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 603 - 612
  • [29] On the role of novelty for search result diversification
    Rodrygo L. T. Santos
    Craig Macdonald
    Iadh Ounis
    Information Retrieval, 2012, 15 : 478 - 502
  • [30] Result Diversification in Search and Recommendation: A Survey
    Wu, Haolun
    Zhang, Yansen
    Ma, Chen
    Lyu, Fuyuan
    He, Bowei
    Mitra, Bhaskar
    Liu, Xue
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5354 - 5373