A Note on the New Ostrowski and Hadamard Type Inequalities via the Hölder-İşcan Inequality

被引:1
|
作者
Yildiz, Cetin [1 ]
Valdes, Juan E. Napoles [2 ]
Cotirla, Luminita-Ioana [3 ]
机构
[1] Ataturk Univ, KK Educ Fac, Dept Math, TR-25240 Erzurum, Turkiye
[2] Univ Nacl Nordeste, Fac Ciencias Exactas & Nat & Agrimensura, Av Libertad 5450, RA-3400 Corrientes, Argentina
[3] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400020, Romania
关键词
exponential type convex functions; Holder Inequality; Holder-Iscan Inequality; CONVEX-FUNCTIONS; INTEGRAL-INEQUALITIES;
D O I
10.3390/axioms12100931
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For all convex functions, the Hermite-Hadamard inequality is already well known in convex analysis. In this regard, Hermite-Hadamard and Ostrowski type inequalities were obtained using exponential type convex functions in this work. In addition, new generalizations were found for different values of theta. In conclusion, we believe that our work's technique will inspire more study in this field.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] BF - Ostrowski Type Inequalities via φ - λ-convex functions
    Hassan, Ali
    Khan, Asif Raza
    Mehmood, Faraz
    Khan, Maria
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (10): : 177 - 183
  • [32] New weighted Ostrowski and Cebysev type inequalities
    Ahmad, Farooq
    Barnett, N. S.
    Dragomir, S. S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1408 - E1412
  • [33] NEW OSTROWSKI TYPE INEQUALITY FOR TRIPLE INTEGRALS
    Pachpatte, B. G.
    TAMKANG JOURNAL OF MATHEMATICS, 2007, 38 (03): : 253 - 259
  • [34] New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals
    Demir, Senol
    Maden, Selahattin
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (03): : 1311 - 1324
  • [35] EXPONENTIAL POMPEIU'S TYPE INEQUALITIES WITH APPLICATIONS TO OSTROWSKI'S INEQUALITY
    Dragomir, S. S.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2015, 84 (01): : 39 - 50
  • [36] A NEW OSTROWSKI-GRUSS TYPE INEQUALITY
    Miao, Yu
    Han, Fei
    Mu, Jianyong
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2013, 37 (02): : 307 - 317
  • [37] A NEW OSTROWSKI TYPE INEQUALITY ON TIME SCALES
    Xu, Gaopeng
    Fang, Zhong Bo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (03): : 751 - 760
  • [38] On Ostrowski-type inequalities via Fink identity
    Khan, Asif R.
    Nabi, Hira
    Pecaric, Josip E.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (06)
  • [39] Generalizations of Ostrowski type inequalities via Hermite polynomials
    Ljiljanka Kvesić
    Josip Pečarić
    Mihaela Ribičić Penava
    Journal of Inequalities and Applications, 2020
  • [40] Fuzzy Ostrowski type inequalities via φ-λ-convex functions
    Hassan, Ali
    Khan, Asif Raza
    Mehmood, Faraz
    Khan, Maria
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (03): : 224 - 235