Automatic Generation of SBML Kinetic Models from Natural Language Texts Using GPT

被引:3
|
作者
Maeda, Kazuhiro [1 ]
Kurata, Hiroyuki [1 ]
机构
[1] Kyushu Inst Technol, Dept Biosci & Bioinformat, 680-4 Kawazu, Fukuoka 8208502, Japan
基金
日本学术振兴会;
关键词
GPT; large language model; kinetic modeling; simulation; systems biology; SYSTEMS BIOLOGY; BIOCHEMICAL NETWORKS; HEAT-SHOCK; CADLIVE; COPASI;
D O I
10.3390/ijms24087296
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Kinetic modeling is an essential tool in systems biology research, enabling the quantitative analysis of biological systems and predicting their behavior. However, the development of kinetic models is a complex and time-consuming process. In this article, we propose a novel approach called KinModGPT, which generates kinetic models directly from natural language text. KinModGPT employs GPT as a natural language interpreter and Tellurium as an SBML generator. We demonstrate the effectiveness of KinModGPT in creating SBML kinetic models from complex natural language descriptions of biochemical reactions. KinModGPT successfully generates valid SBML models from a range of natural language model descriptions of metabolic pathways, protein-protein interaction networks, and heat shock response. This article demonstrates the potential of KinModGPT in kinetic modeling automation.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [21] A Natural Bias for Language Generation Models
    Meister, Clara
    Stokowiec, Wojciech
    Pimentel, Tiago
    Yu, Lei
    Rimell, Laura
    Kuncoro, Adhiguna
    61ST CONFERENCE OF THE THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 2, 2023, : 243 - 255
  • [22] Natural language generation from Universal Dependencies using data augmentation and pre-trained language models
    Nguyen D.T.
    Tran T.
    International Journal of Intelligent Information and Database Systems, 2023, 16 (01) : 89 - 105
  • [23] Automatic Generation System of Virtual Agent's Motion using Natural Language
    Ishii, Ryo
    Katayama, Taichi
    Higashinaka, Ryuichiro
    Tomita, Junji
    18TH ACM INTERNATIONAL CONFERENCE ON INTELLIGENT VIRTUAL AGENTS (IVA'18), 2018, : 357 - 358
  • [24] Semantic Enriching of Natural Language Texts with Automatic Thematic Role Annotation
    Koerner, Sven J.
    Landhaeusser, Mathias
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, 2010, 6177 : 92 - 99
  • [25] Automatic analysis of natural language texts in man-machine communication
    Unold, O
    SYSTEMS DEVELOPMENT METHODS FOR THE NEXT CENTURY, 1997, : 185 - 194
  • [26] SEMINAR OF CMEA MEMBER COUNTRIES ON AUTOMATIC PROCESSING OF NATURAL LANGUAGE TEXTS
    KRAVTSOV.IS
    NAUCHNO-TEKHNICHESKAYA INFORMATSIYA SERIYA 2-INFORMATSIONNYE PROTSESSY I SISTEMY, 1973, (06): : 29 - 30
  • [27] Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models
    Sarsa, Sami
    Denny, Paul
    Hellas, Arto
    Leinonen, Juho
    PROCEEDINGS OF THE 2022 ACM CONFERENCE ON INTERNATIONAL COMPUTING EDUCATION RESEARCH, ICER 2022, VOL. 1, 2023, : 27 - 43
  • [28] Automatic code generation using unified modeling language activity and sequence models
    Viswanathan, Sunitha Edacheril
    Samuel, Philip
    IET SOFTWARE, 2016, 10 (06) : 164 - 172
  • [29] Learning ontologies from natural language texts
    Shamsfard, M
    Barforoush, AA
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, 2004, 60 (01) : 17 - 63
  • [30] Automatic Data Warehouse Generation Model from BI Requirements in Natural Language
    Andres Pizarro, Carlos
    Novillo, Gabriel
    Montejano, German
    COMMUNICATION AND SMART TECHNOLOGIES (ICOMTA 2021), 2022, 259 : 13 - 21