SOR-based alternately linearized implicit iteration method for nonsymmetric algebraic Riccati equations

被引:0
|
作者
Du, Chunjuan [1 ]
Yan, Tongxin [1 ]
机构
[1] Fujian Univ Technol, Sch Comp Sci & Math, Fuzhou 350118, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
nonsymmetric algebraic Riccati equations; minimal nonnegative solution; convergence; iterative; SORALI; PRESERVING DOUBLING-ALGORITHM; WIENER-HOPF FACTORIZATION; MATRIX;
D O I
10.3934/math.20231013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a class of successive over relaxation-based alternately linearized implicit iteration method for computing the minimal nonnegative solution of nonsymmetric algebraic Riccati equations. Under certain conditions, we prove the convergence of the iterative method. Finally, numerical examples are given to show the iterative method is efficient.
引用
收藏
页码:19876 / 19891
页数:16
相关论文
共 50 条
  • [41] The relaxed Newton-like method for a nonsymmetric algebraic Riccati equation
    Li, Jian-Lei
    Huang, Ting-Zhu
    Zhang, Zhi-Jiang
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (06) : 1132 - 1142
  • [42] Two-Step Relaxation Newton Method for Nonsymmetric Algebraic Riccati Equations Arising from Transport Theory
    Wu, Shulin
    Huang, Chengming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [43] A piecewise variational iteration method for Riccati differential equations
    Geng, Fazhan
    Lin, Yingzhen
    Cui, Minggen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) : 2518 - 2522
  • [44] A class of iterative methods for solving nonsymmetric algebraic Riccati equations arising in transport theory
    Lin, Yiqin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3046 - 3051
  • [45] Solving Time-Varying Nonsymmetric Algebraic Riccati Equations With Zeroing Neural Dynamics
    Simos, Theodore E. E.
    Katsikis, Vasilios N. N.
    Mourtas, Spyridon D. D.
    Stanimirovic, Predrag S. S.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (10): : 6575 - 6587
  • [46] Fast iterative schemes for nonsymmetric algebraic Riccati equations arising from transport theory
    Bai, Zhong-Zhi
    Gao, Yong-Hua
    Lu, Lin-Zhang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 804 - 818
  • [47] A subspace shift technique for nonsymmetric algebraic Riccati equations associated with an M-matrix
    Iannazzo, Bruno
    Poloni, Federico
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (03) : 440 - 452
  • [48] Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices
    Guo, CH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) : 225 - 242
  • [49] A note on the relaxed Newton-like method for nonsymmetric algebraic Riccati equation
    Li, Jian-Lei
    Xue, Jun-Xiao
    Li, Xiao-Yan
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (03) : 574 - 578
  • [50] Convergence analysis of the Newton-Shamanskii method for a nonsymmetric algebraic Riccati equation
    Lin, Yiqin
    Bao, Liang
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2008, 15 (06) : 535 - 546