SOR-based alternately linearized implicit iteration method for nonsymmetric algebraic Riccati equations

被引:0
|
作者
Du, Chunjuan [1 ]
Yan, Tongxin [1 ]
机构
[1] Fujian Univ Technol, Sch Comp Sci & Math, Fuzhou 350118, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
nonsymmetric algebraic Riccati equations; minimal nonnegative solution; convergence; iterative; SORALI; PRESERVING DOUBLING-ALGORITHM; WIENER-HOPF FACTORIZATION; MATRIX;
D O I
10.3934/math.20231013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a class of successive over relaxation-based alternately linearized implicit iteration method for computing the minimal nonnegative solution of nonsymmetric algebraic Riccati equations. Under certain conditions, we prove the convergence of the iterative method. Finally, numerical examples are given to show the iterative method is efficient.
引用
收藏
页码:19876 / 19891
页数:16
相关论文
共 50 条
  • [1] A new linearized implicit iteration method for nonsymmetric algebraic Riccati equations
    Lu H.
    Ma C.
    Journal of Applied Mathematics and Computing, 2016, 50 (1-2) : 227 - 241
  • [2] Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations
    Bai, Zhong-Zhi
    Guo, Xiao-Xia
    Xu, Shu-Fang
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2006, 13 (08) : 655 - 674
  • [3] Modified Alternately Linearized Implicit Iteration Methods for Nonsymmetric Coupled Algebraic Riccati Equation
    Wang, Li
    Xiao, Yi
    Zhu, Yu-Li
    Wang, Yi-Bo
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [4] Modified alternately linearized implicit iteration method for M-matrix algebraic Riccati equations
    Guan, Jinrui
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 442 - 448
  • [5] A generalized ALI iteration method for nonsymmetric algebraic Riccati equations
    Guan, Jinrui
    Wang, Zhixin
    NUMERICAL ALGORITHMS, 2024, 97 (01) : 119 - 134
  • [6] ALTERNATELY LINEARIZED IMPLICIT ITERATION METHODS FOR SOLVING QUADRATIC MATRIX EQUATIONS
    Gui, Bing
    Liu, Hao
    Yan, Minli
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (03) : 306 - 311
  • [7] A class of ADI method for the nonsymmetric coupled algebraic Riccati equations
    Guan, Jinrui
    Zhang, Yu
    Wen, Ruiping
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (05) : 4519 - 4536
  • [8] Quadratic alternating direction implicit iteration for the fast solution of algebraic Riccati equations
    Wong, N
    Balakrishnan, V
    ISPACS 2005: PROCEEDINGS OF THE 2005 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, 2005, : 373 - 376
  • [9] Numerical Study on Nonsymmetric Algebraic Riccati Equations
    Changfeng Ma
    Huaize Lu
    Mediterranean Journal of Mathematics, 2016, 13 : 4961 - 4973
  • [10] Numerical Study on Nonsymmetric Algebraic Riccati Equations
    Ma, Changfeng
    Lu, Huaize
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4961 - 4973