Improving risk stratification of recurrent myocardial infarction in a large real-world dataset using machine learning

被引:0
|
作者
Chodick, G. [1 ]
Vered, Z. [2 ]
Elgui, K. [3 ]
Mathieu, T. [3 ]
Trichelair, P. [3 ]
Zachlederova, M. [4 ]
Rousset, A. [5 ]
机构
[1] Maccabi Hlth Serv, Tel Aviv, Israel
[2] Tel Aviv Univ, Res Inst, Sackler Sch Med, Maccabi Hlth Serv, Tel Aviv, Israel
[3] Owkin Inc, New York, NY USA
[4] Amgen Sro, Prague, Czech Republic
[5] Amgen Inc, Thousand Oaks, CA USA
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Machine- Learning Models Based on Real-World Data to Predict Rehospitalization or Death After Acute Myocardial Infarction
    Seegan, George
    O'Kelly, James
    Kalich, Bethany
    Shahabi, Ahva
    CIRCULATION, 2022, 146
  • [22] Fine-grained Video Attractiveness Prediction Using Multimodal Deep Learning on a Large Real-world Dataset
    Chen, Xinpeng
    Chen, Jingyuan
    Ma, Lin
    Yao, Jian
    Liu, Wei
    Luo, Jiebo
    Zhang, Tong
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 671 - 678
  • [23] Improving Risk Stratification for Patients With Type 2 Myocardial Infarction
    Taggart, Caelan
    Monterrubio-Gomez, Karla
    Roos, Andreas
    Boeddinghaus, Jasper
    Kimenai, Dorien M.
    Kadesjo, Erik
    Bularga, Anda
    Wereski, Ryan
    Ferry, Amy
    Lowry, Matthew
    Anand, Atul
    Lee, Kuan Ken
    Doudesis, Dimitrios
    Manolopoulou, Ioanna
    Nestelberger, Thomas
    Koechlin, Luca
    Lopez-Ayala, Pedro
    Mueller, Christian
    Mills, Nicholas L.
    Vallejos, Catalina A.
    Chapman, Andrew R.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (02) : 156 - 168
  • [24] Risk of acute myocardial infarction with real-world NSAIDs depends on dose and timing of exposure
    Bally, Michele
    Beauchamp, Marie-Eve
    Abrahamowicz, Michal
    Nadeau, Lyne
    Brophy, James M.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2018, 27 (01) : 69 - 77
  • [25] Machine learning for improving risk stratification after ACS
    Weichwald, S.
    Candreva, A.
    Burkholz, R.
    Klingenberg, R.
    Raeber, L.
    Mach, F.
    Rodondi, N.
    Laaksonen, R.
    Manka, R.
    Luescher, T. F.
    Ruschitzka, F.
    Buhmann, J. M.
    Matter, C. M.
    EUROPEAN HEART JOURNAL, 2018, 39 : 1297 - 1297
  • [26] Retrospective validation of a machine learning clinical decision support tool for myocardial infarction risk stratification
    Panchavati, Saarang
    Lam, Carson
    Zelin, Nicole S.
    Pellegrini, Emily
    Barnes, Gina
    Hoffman, Jana
    Garikipati, Anurag
    Calvert, Jacob
    Mao, Qingqing
    Das, Ritankar
    HEALTHCARE TECHNOLOGY LETTERS, 2021, 8 (06) : 139 - 147
  • [27] machine learning applications using real-world data: A literature review
    Adair, Nicholas
    Icten, Zeynep
    Friedman, Mark
    Menzin, Joseph
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 339 - 339
  • [28] Learning real-world heterogeneous noise models with a benchmark dataset
    Sun, Lu
    Lin, Jie
    Dong, Weisheng
    Li, Xin
    Wu, Jinjian
    Shi, Guangming
    PATTERN RECOGNITION, 2024, 156
  • [29] Active Learning Strategies on a Real-World Thyroid Ultrasound Dataset
    Sreedhar, Hari
    Lajoinie, Guillaume P. R.
    Raffaelli, Charles
    Delingette, Herve
    DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS, DALI 2023, 2024, 14379 : 127 - 136
  • [30] Does Ticagrelor Decrease the Risk of Recurrent Fatal or Non-Fatal Myocardial Infarction in Real-World Settings? The AReMIS (Antiplatelet agents and Recurrent Myocardial Infarction Study) Case-Cohort Study
    Grimaldi-Bensouda, Lamiae
    Danchin, Nicholas
    Dallongeville, Jean
    Falissard, Bruno
    Furber, Alain
    Cottin, Yves
    Bonello, Laurent
    Morel, Olivier
    Leclercq, Florence
    Puymirat, Etienne
    Ghanem, Fahmi
    Benichou, Jacques
    Abenhaim, Lucien
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 : 465 - 465