Deformation and damage of equiatomic CoCrFeNi high-entropy alloy under plate impact loading

被引:37
|
作者
Cheng, J. C. [1 ,2 ]
Qin, H. L. [3 ]
Li, C. [4 ]
Zhao, F. [1 ,2 ]
Pan, R. C. [5 ]
Wang, Q. Y. [1 ,2 ]
Bian, Y. L. [4 ,5 ]
Luo, S. N.
机构
[1] Chengdu Univ, Inst Adv Study, Chengdu, Sichuan, Peoples R China
[2] Chengdu Univ, Inst Adv Mat Deformat & Damage Multiscale, Chengdu, Sichuan, Peoples R China
[3] Chengdu Univ, Sch Mech Engn, Chengdu, Sichuan, Peoples R China
[4] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Chengdu, Sichuan, Peoples R China
[5] Peac Inst Multiscale Sci, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
High -entropy alloy; Plate impact; Spall strength; Deformation twinning; Ductile damage; STACKING-FAULT ENERGY; STRAIN-RATE; SHOCK COMPRESSION; STRENGTH; STRESS;
D O I
10.1016/j.msea.2022.144432
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-entropy alloys (HEAs) are considered as potential structural materials for aerospace and defense applications where impacts are recurrently encountered. The dynamic mechanical properties and the underlying deformation and damage mechanisms are significant for safety assessment and structural design optimization, but are underinvestigated. In this work, two types of plate impact experiments, i.e., shock compression and spallation, are performed on typical quaternary CoCrFeNi HEA (at%), to investigate its dynamic mechanical properties and microscopic deformation/damage mechanisms. Free-surface velocity histories are measured to evaluate the mechanical properties and damage processes, including the Hugoniot elastic limit (HEL; -0.8 GPa), spall strength (-3.2 GPa) and pullback rates. The spall strength of the CoCrFeNi HEA is higher than those of most medium- and high-entropy alloys ever reported, except for the Al0.1CoCrFeNi HEA. The deformed samples are characterized with scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Shock-induced dislocation slip and deformation twinning dominate plastic deformation. With increasing impact velocity, dislocation density increases significantly and twin bundles appear instead of individual twins. For incipient spallation, voids nucleate preferentially at grain boundaries, especially at grain boundary triple junctions. Damage in the CoCrFeNi HEA is ductile in nature.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Structure of High-Entropy CoCrFeNi Alloy Obtained by Laser Alloying
    Girzhon, V. V.
    Yemelianchenko, V. V.
    Smolyakov, O. V.
    METALLOPHYSICS AND ADVANCED TECHNOLOGIES, 2022, 44 (06) : 725 - 733
  • [42] Strengthening CoCrFeNi high-entropy alloy by Laves and boride phases
    Xiu-gang Chen
    Gang Qin
    Xue-feng Gao
    Rui-run Chen
    Qiang Song
    Hong-zhi Cui
    China Foundry, 2022, 19 (06) : 457 - 463
  • [43] Strengthening CoCrFeNi high-entropy alloy by Laves and boride phases
    Xiu-gang Chen
    Gang Qin
    Xue-feng Gao
    Rui-run Chen
    Qiang Song
    Hong-zhi Cui
    China Foundry, 2022, 19 : 457 - 463
  • [44] High-entropy equiatomic AlCrFeCoNiCu alloy: Hypotheses and experimental data
    Ivchenko, M. V.
    Pushin, V. G.
    Wanderka, N.
    TECHNICAL PHYSICS, 2014, 59 (02) : 211 - 223
  • [45] Irradiation resistance mechanism of the CoCrFeMnNi equiatomic high-entropy alloy
    Xu, Q.
    Guan, H. Q.
    Zhong, Z. H.
    Huang, S. S.
    Zhao, J. J.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [46] Cold Gas Spraying of a High-Entropy CrFeNiMn Equiatomic Alloy
    Lehtonen, Joonas
    Koivuluoto, Heli
    Ge, Yanling
    Juselius, Aapo
    Hannula, Simo-Pekka
    COATINGS, 2020, 10 (01)
  • [47] High-entropy equiatomic AlCrFeCoNiCu alloy: Hypotheses and experimental data
    M. V. Ivchenko
    V. G. Pushin
    N. Wanderka
    Technical Physics, 2014, 59 : 211 - 223
  • [48] Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy
    Luo, Hong
    Li, Zhiming
    Raabe, Dierk
    SCIENTIFIC REPORTS, 2017, 7
  • [49] Irradiation resistance mechanism of the CoCrFeMnNi equiatomic high-entropy alloy
    Q. Xu
    H. Q. Guan
    Z. H. Zhong
    S. S. Huang
    J. J. Zhao
    Scientific Reports, 11
  • [50] Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy
    Hong Luo
    Zhiming Li
    Dierk Raabe
    Scientific Reports, 7