Weighted variational problems;
existence and non-existence;
Caffarelli-Kohn-Nirenberg inequalities;
SOBOLEV-TYPE EMBEDDINGS;
TRUDINGER-MOSER;
EXTREMAL-FUNCTIONS;
INEQUALITY;
OPERATORS;
EQUATION;
SPACES;
D O I:
10.1080/17476933.2021.2021195
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we study the existence and non-existence of maximizers for variational problems associated with Caffarelli-Kohn-Nirenberg-type inequalities under the equivalent constraints both in the subcritical case and critical case. Furthermore, if the maximizer exists, we can derive the concrete form of the maximizers. Our method is based on establishing a useful link between the attainability of the supremum in our variational problems and the attainability of the supremum of some special functions defined on (0,infinity).
机构:
Nanjing Agr Univ, Coll Sci, Nanjing 210095, Peoples R ChinaNanjing Agr Univ, Coll Sci, Nanjing 210095, Peoples R China
Li, Ling
Du, Yihong
论文数: 0引用数: 0
h-index: 0
机构:
Univ New England, Sch Sci & Technol, Armidale, NSW 2351, AustraliaNanjing Agr Univ, Coll Sci, Nanjing 210095, Peoples R China
Du, Yihong
Lei, Yutian
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Minist Educ, Key Lab NSLSCS, Nanjing, Peoples R ChinaNanjing Agr Univ, Coll Sci, Nanjing 210095, Peoples R China