Minimum codimension of eigenspaces in irreducible representations of simple classical linear algebraic groups

被引:0
|
作者
Retegan, Ana-M. [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, England
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Linear algebraic groups; representation theory; UNIPOTENT ELEMENTS; FINITE;
D O I
10.1080/00927872.2024.2302097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field of characteristic p >= 0, let G be a simple simply connected classical linear algebraic group of rank l and let T be a maximal torus in G with rational character group X(T). For a nonzero p-restricted dominant weight lambda is an element of X(T), let V be the associated irreducible kG-module. We define nu G(V) as the minimum codimension of any eigenspace on V for any non-central element of G. In this paper, we determine lower-bounds for nu G(V) for G of type Al and dim(V)<= l32, and for G of type Bl,Cl, or Dl and dim(V)<= 4l3. Moreover, we give the exact value of nu G(V) for G of type Al with l >= 15; for G of type Bl or Cl with l >= 14; and for G of type Dl with l >= 16.
引用
下载
收藏
页码:2558 / 2597
页数:40
相关论文
共 50 条