An implementation framework to improve the transparency and reproducibility of computational models of infectious diseases

被引:3
|
作者
Pokutnaya, Darya [1 ]
Childers, Bruce [2 ]
Arcury-Quandt, Alice E. [1 ]
Hochheiser, Harry [3 ]
Van Panhuis, Willem G. [1 ,4 ]
机构
[1] Univ Pittsburgh, Dept Epidemiol, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Dept Comp Sci, Pittsburgh, PA USA
[3] Univ Pittsburgh, Dept Biomed Informat, Intelligent Syst Program, Pittsburgh, PA USA
[4] Natl Inst Allergy & Infect Dis, Off Data Sci & Emerging Technol, Rockville, MD USA
关键词
D O I
10.1371/journal.pcbi.1010856
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computational models of infectious diseases have become valuable tools for research and the public health response against epidemic threats. The reproducibility of computational models has been limited, undermining the scientific process and possibly trust in modeling results and related response strategies, such as vaccination. We translated published reproducibility guidelines from a wide range of scientific disciplines into an implementation framework for improving reproducibility of infectious disease computational models. The framework comprises 22 elements that should be described, grouped into 6 categories: computational environment, analytical software, model description, model implementation, data, and experimental protocol. The framework can be used by scientific communities to develop actionable tools for sharing computational models in a reproducible way.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model
    Kentner, Amanda C.
    Bilbo, Staci D.
    Brown, Alan S.
    Hsiao, Elaine Y.
    McAllister, A. Kimberley
    Meyer, Urs
    Pearce, Brad D.
    Pletnikov, Mikhail V.
    Yolken, Robert H.
    Bauman, Melissa D.
    NEUROPSYCHOPHARMACOLOGY, 2019, 44 (02) : 245 - 258
  • [32] Transparency, reproducibility, and quality of energy system analyses - A process to improve scientific work
    Huelk, Ludwig
    Mueller, Berit
    Glauer, Martin
    Forster, Elisa
    Schachler, Birgit
    ENERGY STRATEGY REVIEWS, 2018, 22 : 264 - 269
  • [33] Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model
    Amanda C. Kentner
    Staci D. Bilbo
    Alan S. Brown
    Elaine Y. Hsiao
    A. Kimberley McAllister
    Urs Meyer
    Brad D. Pearce
    Mikhail V. Pletnikov
    Robert H. Yolken
    Melissa D. Bauman
    Neuropsychopharmacology, 2019, 44 : 245 - 258
  • [34] Reproducibility and Comparability of Computational Models for Astrocyte Calcium Excitability
    Manninen, Tiina
    Havela, Riikka
    Linne, Marja-Leena
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [35] Improving Reproducibility and Transparency in Shock: the Arrive Guidelines Need Better Implementation and Enforcement
    Reynolds, Penny S.
    SHOCK, 2020, 53 (03): : 373 - 374
  • [36] A framework for reconstructing transmission networks in infectious diseases
    Sara Najem
    Stefano Monni
    Rola Hatoum
    Hawraa Sweidan
    Ghaleb Faour
    Chadi Abdallah
    Nada Ghosn
    Hamad Hassan
    Jihad Touma
    Applied Network Science, 7
  • [37] A framework for reconstructing transmission networks in infectious diseases
    Najem, Sara
    Monni, Stefano
    Hatoum, Rola
    Sweidan, Hawraa
    Faour, Ghaleb
    Abdallah, Chadi
    Ghosn, Nada
    Hassan, Hamad
    Touma, Jihad
    APPLIED NETWORK SCIENCE, 2022, 7 (01)
  • [38] Improvements to a framework for gender and emerging infectious diseases
    Lawry, Lynn Lieberman
    Lugo-Robles, Roberta
    McIver, Vicki
    BULLETIN OF THE WORLD HEALTH ORGANIZATION, 2021, 99 (09) : 682 - 684
  • [39] A numerical framework for estimating the effective reproduction number of infectious diseases from compartmental epidemic models
    Hasan, Agus
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 103
  • [40] Addressing the socioeconomic divide in computational modeling for infectious diseases
    Tizzoni, Michele
    Nsoesie, Elaine O.
    Gauvin, Laetitia
    Karsai, Marton
    Perra, Nicola
    Bansal, Shweta
    NATURE COMMUNICATIONS, 2022, 13 (01)