An implementation framework to improve the transparency and reproducibility of computational models of infectious diseases

被引:1
|
作者
Pokutnaya, Darya [1 ]
Childers, Bruce [2 ]
Arcury-Quandt, Alice E. [1 ]
Hochheiser, Harry [3 ]
Van Panhuis, Willem G. [1 ,4 ]
机构
[1] Univ Pittsburgh, Dept Epidemiol, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Dept Comp Sci, Pittsburgh, PA USA
[3] Univ Pittsburgh, Dept Biomed Informat, Intelligent Syst Program, Pittsburgh, PA USA
[4] Natl Inst Allergy & Infect Dis, Off Data Sci & Emerging Technol, Rockville, MD USA
关键词
Computation theory - Computational methods - Health risks - Public health;
D O I
10.1371/journal.pcbi.1010856
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computational models of infectious diseases have become valuable tools for research and the public health response against epidemic threats. The reproducibility of computational models has been limited, undermining the scientific process and possibly trust in modeling results and related response strategies, such as vaccination. We translated published reproducibility guidelines from a wide range of scientific disciplines into an implementation framework for improving reproducibility of infectious disease computational models. The framework comprises 22 elements that should be described, grouped into 6 categories: computational environment, analytical software, model description, model implementation, data, and experimental protocol. The framework can be used by scientific communities to develop actionable tools for sharing computational models in a reproducible way.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] ENCORE: a practical implementation to improve reproducibility and transparency of computational research
    van Kampen, Antoine H. C.
    Mahamune, Utkarsh
    Jongejan, Aldo
    van Schaik, Barbera D. C.
    Balashova, Daria
    Lashgari, Danial
    Pras-Raves, Mia
    Wever, Eric J. M.
    Dane, Adrie D.
    Garcia-Valiente, Rodrigo
    Moerland, Perry D.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] Nontargeted Analysis Study Reporting Tool: A Framework to Improve Research Transparency and Reproducibility
    Peter, Katherine T.
    Phillips, Allison L.
    Knolhoff, Ann M.
    Gardinali, Piero R.
    Manzano, Carlos A.
    Miller, Kelsey E.
    Pristner, Manuel
    Sabourin, Lyne
    Sumarah, Mark W.
    Warth, Benedikt
    Sobus, Jon R.
    [J]. ANALYTICAL CHEMISTRY, 2021, 93 (41) : 13870 - 13879
  • [3] Implementation of constitutive models in computational intelligence framework
    Drakos, Stefanos I.
    Lee, Kwang-Ho
    Shin, Hyu-Soung
    Pande, Gyan N.
    [J]. NUMERICAL MODELS IN GEOMECHANICS: NUMOG X, 2007, : 627 - +
  • [4] Reproducibility of Computational Models
    Erdemir, A.
    Sauro, H. M.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (10) : 1995 - 1996
  • [5] Trustworthy Computational Evidence Through Transparency and Reproducibility
    Barba, Lorena A.
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2021, 23 (01) : 58 - 64
  • [6] Improving the Infectious Diseases Physician Scientist Workforce From the View of Junior Investigators: Vision, Transparency, and Reproducibility
    Collins, Jeffrey M.
    Wallender, Erika K.
    Woodworth, Michael H.
    [J]. CLINICAL INFECTIOUS DISEASES, 2020, 70 (01) : 162 - 168
  • [7] Implementation of Telemedicine Infectious Diseases Consultation in a Rural Hospital Using the Active Implementation Framework
    Burnham, Jason P.
    Fritz, Stephanie A.
    Colditz, Graham A.
    [J]. OPEN FORUM INFECTIOUS DISEASES, 2022, 9 (11):
  • [8] A computational framework to improve cross-platform implementation of transcriptomics signatures
    Kreitmann, Louis
    D'Souza, Giselle
    Miglietta, Luca
    Vito, Ortensia
    Jackson, Heather R.
    Habgood-Coote, Dominic
    Levin, Michael
    Holmes, Alison
    Kaforou, Myrsini
    Rodriguez-Manzano, Jesus
    [J]. EBIOMEDICINE, 2024, 105
  • [9] MODELS FOR INFECTIOUS DISEASES
    FRENKEL, JK
    [J]. FEDERATION PROCEEDINGS, 1969, 28 (01) : 179 - +
  • [10] Lack of Awareness or Lack of Knowledge? Transparency and Reproducibility in Computational Archaeology
    Pardo-Gordo, Salvador
    Cortell-Nicolau, Alfredo
    [J]. VEGUETA-ANUARIO DE LA FACULTAD DE GEOGRAFIA E HISTORIA, 2023, 23 (01): : 243 - 263